利用图逻辑编排机械臂的‘视觉感知-规划-执行-反馈’闭环:Robotic Control Loops in LangGraph 在现代工业和科研领域,机器人技术正以前所未有的速度发展,尤其是机械臂,它们在制造、医疗、探索等多个场景中扮演着核心角色。然而,要让机械臂从简单的重复性任务走向智能化的自主操作,需要一套高效、鲁棒的控制系统。传统的机器人控制往往依赖于预设的程序和复杂的状态机,在面对动态、不确定的环境时显得力不从心。 随着人工智能,特别是大型语言模型(LLMs)和多模态模型(VLMs)的兴起,我们有机会重新构想机器人控制的范式。通过将LLMs的推理能力与机器人的物理执行能力结合,我们可以构建更加灵活、适应性强的机器人系统。然而,如何有效地组织这种复杂的“感知-规划-执行-反馈”闭环,管理其状态,并处理各种条件分支和潜在的错误,是一个巨大的挑战。 LangGraph,作为LangChain生态系统的一部分,提供了一个强大的解决方案。它允许我们使用图结构来定义和管理有状态的、多参与者的、包含循环的应用程序。这种基于图的逻辑与机器人控制的闭环天生契合,能够以一种声明式、模块化的方式来编 …
继续阅读“什么是 ‘Robotic Control Loops in LangGraph’:利用图逻辑编排机械臂的‘视觉感知-规划-执行-反馈’闭环”