DeepSpeed/FairScale:大规模分布式训练与模型并行优化

好的,各位观众老爷,欢迎来到今天的“DeepSpeed/FairScale:大规模分布式训练与模型并行优化”专场脱口秀!我是你们的老朋友,Bug终结者,代码段子手,今天要跟大家唠唠嗑,聊聊怎么用DeepSpeed和FairScale这两个神器,把那些动辄几十亿、几千亿参数的大模型,像玩泥巴一样轻松训练出来。 开场白:模型太大,钱包太瘪?分布式训练来救场! 话说,现在AI圈流行“大力出奇迹”,模型参数一个比一个多,动不动就几百GB,单张显卡根本塞不下。就算勉强塞进去,训练起来慢得像蜗牛爬,电费都够你买辆小汽车了! 这时候,分布式训练就显得尤为重要了。简单来说,就是把一个大模型切成小块,分给多张显卡甚至多台机器去训练。大家齐心协力,共同进步,效率嗖嗖的! 但是,分布式训练也不是那么容易的。数据怎么分?梯度怎么同步?通信开销怎么优化?一不小心就掉坑里了。好在,DeepSpeed和FairScale这两个好基友,帮我们填平了这些坑。 第一幕:DeepSpeed:微软出品,必属精品? DeepSpeed是微软搞出来的,号称“让深度学习更深、更快、更省”。它主要解决了以下几个问题: 模型并行性: …