好的,各位观众老爷们,欢迎来到今天的“DeepSpeed/FairScale:大规模分布式训练与模型并行优化”专场!今天咱们不搞虚的,直接上干货,聊聊如何用DeepSpeed和FairScale这两个神器,把那些动不动就几百亿、几千亿参数的大模型给喂饱,让它们跑得飞起! 一、引言:模型越来越大,显存越来越小? 话说啊,这年头,模型参数量蹭蹭往上涨,恨不得一天一个亿。但咱们手里的显卡,显存就那么点,捉襟见肘啊!单卡训练?那得等到猴年马月!所以,分布式训练是唯一的出路。但是,分布式训练也不是那么容易的,各种问题等着你: 显存不够用? 一个模型几百G,一张卡才几十G,怎么塞得下? 通信开销太大? 几百张卡一起训练,数据传来传去,网络带宽不够啊! 训练效率不高? 卡多了,但效率反而下降了,感觉白花了钱! 别慌!DeepSpeed和FairScale就是来拯救世界的!它们提供了各种模型并行技术,帮你解决这些问题,让你的大模型训练事半功倍。 二、DeepSpeed:微软出品,必属精品? DeepSpeed是微软开源的一个深度学习优化库,专注于大规模分布式训练。它的目标是让每个人都能轻松训练拥有数十 …
DeepSpeed/FairScale:大规模分布式训练与模型并行优化
好的,各位观众老爷,欢迎来到今天的“DeepSpeed/FairScale:大规模分布式训练与模型并行优化”专场脱口秀!我是你们的老朋友,Bug终结者,代码段子手,今天要跟大家唠唠嗑,聊聊怎么用DeepSpeed和FairScale这两个神器,把那些动辄几十亿、几千亿参数的大模型,像玩泥巴一样轻松训练出来。 开场白:模型太大,钱包太瘪?分布式训练来救场! 话说,现在AI圈流行“大力出奇迹”,模型参数一个比一个多,动不动就几百GB,单张显卡根本塞不下。就算勉强塞进去,训练起来慢得像蜗牛爬,电费都够你买辆小汽车了! 这时候,分布式训练就显得尤为重要了。简单来说,就是把一个大模型切成小块,分给多张显卡甚至多台机器去训练。大家齐心协力,共同进步,效率嗖嗖的! 但是,分布式训练也不是那么容易的。数据怎么分?梯度怎么同步?通信开销怎么优化?一不小心就掉坑里了。好在,DeepSpeed和FairScale这两个好基友,帮我们填平了这些坑。 第一幕:DeepSpeed:微软出品,必属精品? DeepSpeed是微软搞出来的,号称“让深度学习更深、更快、更省”。它主要解决了以下几个问题: 模型并行性: …