各位技术同仁,下午好! 今天,我们齐聚一堂,共同探讨一个在大型语言模型(LLM)应用开发中日益凸显的关键议题:如何为LLM提供精准、及时且高效的上下文。随着LLM能力的飞速发展,我们已经能够利用它们完成从代码生成到复杂问题解答的各种任务。然而,LLM的效能,特别是其输出的准确性和相关性,在很大程度上取决于其所接收到的上下文信息的质量。 传统的做法,无论是通过预训练注入海量知识,还是在推理时简单地将一大段文本作为上下文传入,都面临着固有局限。预训练成本高昂且难以实时更新;而静态传入大量文本,则会很快触及LLM的上下文窗口限制,导致无关信息干扰,甚至引发“幻觉”,同时也会显著增加API调用成本和推理延迟。 因此,今天我将为大家深入解析一个名为“动态上下文加载”(Dynamic Context Loading)的先进策略。顾名思义,这种方法的核心在于根据用户当前所处的“位置”——具体而言,是知识图谱中的某个节点——按需、实时地加载最相关的领域知识库。我们将重点探讨如何利用强大的知识图谱(Graph Database)作为底层结构,并与业界领先的检索增强生成(RAG)框架LlamaIndex进 …
继续阅读“解析 ‘Dynamic Context Loading’:根据当前所在的图节点位置,按需加载相关的领域知识库(LlamaIndex 集成)”