TensorRT-LLM 的 In-flight Batching:与 Triton Inference Server 集成的流水线细节 大家好,今天我们深入探讨 TensorRT-LLM 的 In-flight Batching 技术,并着重讲解如何将其与 Triton Inference Server 集成,构建高效的 LLM 推理流水线。我们将从 In-flight Batching 的概念入手,逐步分析其在 TensorRT-LLM 中的实现细节,最后结合 Triton Inference Server 的特性,展示一个完整的集成方案。 1. In-flight Batching 的概念与优势 传统的静态 Batching 在推理开始前收集固定数量的请求,形成一个 Batch 进行推理。这种方式简单直接,但存在明显的局限性: 延迟抖动: 所有请求必须等待最慢的请求完成,导致延迟抖动较大。 资源浪费: 如果 Batch 中存在短请求,则整个 Batch 的推理时间由最长的请求决定,造成计算资源的浪费。 实时性差: 无法及时处理新到达的请求,实时性较差。 In-flight Bat …
继续阅读“TensorRT-LLM的In-flight Batching:与Triton Inference Server集成的流水线细节”