在构建复杂的人工智能应用,特别是涉及多步骤、多角色协作的语言模型(LLM)驱动的系统时,如何有效地管理和追踪应用的状态至关重要。LangGraph,作为一个基于图结构和状态机的框架,为解决这一挑战提供了强大的机制。其核心在于 State 的概念,以及通过 Reducers 实现 State 从一个“时间点 A”平滑、可控地迁移到“时间点 B”的机制。 本讲座将深入剖析 LangGraph 中 State 的本质、Reducers 的工作原理,以及它们如何协同作用,实现复杂应用状态的演进和管理。我们将通过详细的解释和丰富的代码示例,揭示这一机制的精妙之处。 LangGraph 概览:状态与图的交织 LangGraph 是 LangChain 生态系统中的一个高级库,它允许开发者使用图形结构来定义复杂的代理(agents)和多步骤工作流。其设计灵感来源于有限状态机(Finite State Machines, FSM)和图论,但超越了传统 FSM 的限制,允许状态具有更丰富的内部结构,并且状态之间的转换可以由复杂的逻辑(通常由 LLM 驱动)决定。 在 LangGraph 中,整个应用的工 …
继续阅读“面试必杀:详细描述 LangGraph 中的 `State` 究竟是如何通过 `Reducers` 实现从‘时间点 A’平滑迁移到‘时间点 B’的?”