Python中的语音识别模型(ASR):CTC与Attention-based模型的解码优化 大家好,今天我们要深入探讨Python中语音识别 (ASR) 模型的解码优化,重点关注两种主流架构:Connectionist Temporal Classification (CTC) 和 Attention-based 模型。我们会从理论基础出发,讲解解码算法,并提供相应的Python代码示例,最后讨论一些高级优化策略。 一、语音识别模型架构回顾 在深入解码算法之前,我们先简要回顾一下CTC和Attention-based模型的架构特点,这对于理解解码过程至关重要。 1.1 CTC 模型 CTC模型旨在解决语音和文本序列长度不对齐的问题。它引入了一个特殊的blank符号,允许网络在预测过程中重复预测同一个字符,从而实现序列的对齐。 核心思想: 通过引入blank符号,允许网络在输出序列中插入冗余信息,从而对齐输入语音帧和输出字符序列。 训练目标: 最大化所有可能的对齐方式下,正确文本序列的概率。 主要组件: 声学模型: 通常是RNN (Recurrent Neural Network) 或 …