利用稀疏自动编码器分解Transformer的中间层特征:可解释性视角下的Dictionary Learning 大家好,今天我们来探讨一个非常有趣且重要的课题:如何利用稀疏自动编码器(Sparse Autoencoders)来分解Transformer模型的中间层特征,从而提高模型的可解释性。 Transformer模型,尤其是像BERT、GPT这样的预训练模型,在各种NLP任务中取得了巨大的成功。然而,这些模型的强大能力往往伴随着一个问题:黑盒性。我们很难理解模型内部的运行机制,以及模型做出特定决策的原因。这在很多实际应用场景中是不可接受的,例如金融、医疗等领域,我们需要模型不仅给出预测结果,还要能够解释其预测依据。 Dictionary Learning 是一种试图解决这个问题的技术。它的核心思想是将复杂的输入数据分解成一组基本的、可解释的“原子”(atoms),这些原子构成一个“字典”(dictionary)。通过分析这些原子以及它们在输入数据中的激活情况,我们可以更好地理解数据的结构和模型的工作方式。 1. Transformer的黑盒性与可解释性的重要性 Transform …
继续阅读“Interpretability with Dictionary Learning:利用稀疏自动编码器分解Transformer的中间层特征”