联邦微调:在不共享数据前提下利用差分隐私更新全局模型 大家好,今天我们来深入探讨一个在联邦学习领域非常热门且具有挑战性的课题:联邦微调,以及如何结合差分隐私来实现更安全的数据共享。我们将重点关注如何在不共享原始数据的前提下,利用差分隐私来更新全局模型,从而在保护用户隐私的同时,提升模型的性能。 1. 联邦学习与微调的背景 随着人工智能的快速发展,数据已经成为驱动算法进步的关键因素。然而,许多现实场景下,数据往往分散在不同的参与者手中,且出于隐私、法律或商业敏感性等原因,无法直接共享。联邦学习(Federated Learning,FL)应运而生,它允许在不共享原始数据的情况下,通过聚合本地训练的模型来构建全局模型。 在传统的联邦学习设置中,通常假设全局模型是从头开始训练的。然而,在许多情况下,我们可能已经拥有一个预训练的全局模型,例如在ImageNet上预训练的图像识别模型。在这种情况下,我们可以使用联邦微调(Federated Fine-tuning)技术,即在本地数据上对预训练的全局模型进行微调,然后将微调后的模型更新聚合到全局模型中。 联邦微调的优势在于: 加速收敛: 预训练模型 …