Python 中的倾向得分匹配(Propensity Score Matching):在大规模数据集上的实现优化 各位听众,大家好!今天我们来深入探讨一个在因果推断领域非常重要的技术——倾向得分匹配(Propensity Score Matching, PSM)。特别是在处理大规模数据集时,如何高效地实现 PSM,以及如何在实践中应对各种挑战。 1. 什么是倾向得分匹配? 在观察性研究中,我们经常遇到组间存在显著差异的情况。例如,研究某种药物对疾病的疗效,接受药物治疗的患者可能本身就比未接受治疗的患者病情更严重,或者有其他的健康问题。这种情况下,简单地比较两组的治疗结果可能会产生偏差,因为我们无法确定观察到的差异是由药物引起的,还是由两组患者本身的差异引起的。 倾向得分匹配就是一种用于减少这种选择偏差的技术。它的核心思想是:尝试创建一个“伪随机”的实验环境,使得接受治疗的组和未接受治疗的组在可观测的协变量上尽可能相似。 倾向得分是指个体接受治疗的概率,它是基于可观测的协变量计算出来的。具体来说,我们可以使用逻辑回归等模型,将个体的协变量作为输入,预测其接受治疗的概率。然后,我们可以使用 …
继续阅读“Python中的倾向得分匹配(Propensity Score Matching):在大规模数据集上的实现优化”