利用MySQL Performance Schema 构建实时性能监控与预警系统
大家好,今天我们来探讨如何利用MySQL Performance Schema构建一个基于SQL执行阶段的实时性能监控与预警系统。Performance Schema是MySQL官方提供的性能分析工具,它提供了丰富的运行时数据,可以帮助我们深入了解MySQL服务器的内部运行状态,从而进行性能调优和故障排查。
一、Performance Schema 简介
Performance Schema是一个独立的存储引擎,用于收集MySQL服务器的运行时信息。它通过instrumentation技术,在MySQL服务器的关键代码路径上埋点,收集诸如SQL语句执行时间、锁等待、IO操作等信息。这些信息存储在Performance Schema数据库中的表中,我们可以通过SQL语句查询这些表来分析MySQL服务器的性能。
Performance Schema 的优势:
- 细粒度监控: 能够监控到SQL语句执行的各个阶段,例如parse、optimize、execute等。
- 实时性: 数据是实时更新的,可以实时监控MySQL服务器的状态。
- 低开销: Performance Schema的设计目标是低开销,对MySQL服务器的性能影响较小。
- 可配置性: 可以根据需要启用或禁用特定的instrumentation,以控制监控的粒度和开销。
Performance Schema 的主要组成部分:
- Instruments: 用于收集特定类型的性能数据。例如,
wait/lock/table
用于收集表锁等待的信息。 - Consumers: 用于消费instrumentation收集的数据,并将其存储到Performance Schema的表中。例如,
events_waits_summary_global_by_event_name
表记录了全局的锁等待事件的统计信息。 - Setup Objects: 用于控制哪些instrumentation是被启用的。例如,
setup_instruments
表用于配置哪些instrumentation是启用的。 - Summary Tables: 用于汇总instrumentation收集的数据,方便进行分析。例如,
events_statements_summary_by_digest
表记录了根据SQL语句的摘要信息进行分组的统计信息。
二、系统架构设计
我们的实时性能监控与预警系统将包含以下几个核心模块:
- 数据采集模块: 负责从Performance Schema中采集数据。
- 数据存储模块: 负责存储采集到的数据。可以选择MySQL自身或其他时序数据库(例如InfluxDB)。
- 数据分析模块: 负责分析存储的数据,计算性能指标。
- 预警模块: 负责根据预设的阈值,触发预警。
- 展示模块: 负责展示监控数据和预警信息。
架构图:
+----------------------+ +----------------------+ +----------------------+ +----------------------+ +----------------------+
| MySQL Server | --> | Data Collection | --> | Data Storage | --> | Data Analysis | --> | Alerting/Visualization|
| (Performance Schema) | | (SQL Queries) | | (MySQL/InfluxDB) | | (SQL/Python/etc.) | | (Grafana/Custom UI) |
+----------------------+ +----------------------+ +----------------------+ +----------------------+ +----------------------+
三、数据采集模块
数据采集模块的核心是编写SQL语句从Performance Schema中查询数据。我们需要根据监控的需求,选择合适的Performance Schema表和列。
示例:采集SQL语句执行时间
以下SQL语句可以从events_statements_summary_by_digest
表中获取SQL语句的执行时间统计信息:
SELECT
DIGEST_TEXT,
COUNT_STAR,
SUM_TIMER_WAIT,
AVG_TIMER_WAIT,
FIRST_SEEN,
LAST_SEEN
FROM
performance_schema.events_statements_summary_by_digest
WHERE
COUNT_STAR > 0
ORDER BY
SUM_TIMER_WAIT DESC
LIMIT 10;
DIGEST_TEXT
: SQL语句的摘要,用于标识SQL语句。COUNT_STAR
: SQL语句的执行次数。SUM_TIMER_WAIT
: SQL语句的总执行时间(单位是皮秒)。AVG_TIMER_WAIT
: SQL语句的平均执行时间(单位是皮秒)。FIRST_SEEN
: SQL语句首次执行的时间。LAST_SEEN
: SQL语句最近一次执行的时间。
示例:采集锁等待信息
以下SQL语句可以从events_waits_summary_global_by_event_name
表中获取全局的锁等待事件的统计信息:
SELECT
EVENT_NAME,
COUNT_STAR,
SUM_TIMER_WAIT,
AVG_TIMER_WAIT
FROM
performance_schema.events_waits_summary_global_by_event_name
WHERE
EVENT_NAME LIKE 'wait/lock/%'
ORDER BY
SUM_TIMER_WAIT DESC
LIMIT 10;
EVENT_NAME
: 事件名称,例如wait/lock/table/sql/handler
。COUNT_STAR
: 事件发生的次数。SUM_TIMER_WAIT
: 事件的总等待时间(单位是皮秒)。AVG_TIMER_WAIT
: 事件的平均等待时间(单位是皮秒)。
示例:采集IO相关信息
SELECT
FILE_NAME,
COUNT_READ,
SUM_NUMBER_OF_BYTES_READ,
COUNT_WRITE,
SUM_NUMBER_OF_BYTES_WRITE
FROM
performance_schema.file_summary_by_instance
ORDER BY
SUM_NUMBER_OF_BYTES_READ DESC
LIMIT 10;
FILE_NAME
: 文件名.COUNT_READ
: 读取次数.SUM_NUMBER_OF_BYTES_READ
: 读取总字节数.COUNT_WRITE
: 写入次数.SUM_NUMBER_OF_BYTES_WRITE
: 写入总字节数.
采集脚本示例(Python):
import mysql.connector
import time
def collect_performance_data(config):
"""
Collects performance data from MySQL Performance Schema.
"""
try:
cnx = mysql.connector.connect(**config)
cursor = cnx.cursor(dictionary=True)
# SQL to collect slow query information
slow_query_sql = """
SELECT
DIGEST_TEXT,
COUNT_STAR,
SUM_TIMER_WAIT,
AVG_TIMER_WAIT,
FIRST_SEEN,
LAST_SEEN
FROM
performance_schema.events_statements_summary_by_digest
WHERE
COUNT_STAR > 0
ORDER BY
SUM_TIMER_WAIT DESC
LIMIT 10;
"""
# SQL to collect lock wait information
lock_wait_sql = """
SELECT
EVENT_NAME,
COUNT_STAR,
SUM_TIMER_WAIT,
AVG_TIMER_WAIT
FROM
performance_schema.events_waits_summary_global_by_event_name
WHERE
EVENT_NAME LIKE 'wait/lock/%'
ORDER BY
SUM_TIMER_WAIT DESC
LIMIT 10;
"""
# SQL to collect file IO information
file_io_sql = """
SELECT
FILE_NAME,
COUNT_READ,
SUM_NUMBER_OF_BYTES_READ,
COUNT_WRITE,
SUM_NUMBER_OF_BYTES_WRITE
FROM
performance_schema.file_summary_by_instance
ORDER BY
SUM_NUMBER_OF_BYTES_READ DESC
LIMIT 10;
"""
# Execute queries
cursor.execute(slow_query_sql)
slow_queries = cursor.fetchall()
cursor.execute(lock_wait_sql)
lock_waits = cursor.fetchall()
cursor.execute(file_io_sql)
file_ios = cursor.fetchall()
# Prepare data for storage (example: print to console)
print("Slow Queries:")
for row in slow_queries:
print(row)
print("nLock Waits:")
for row in lock_waits:
print(row)
print("nFile IO:")
for row in file_ios:
print(row)
except mysql.connector.Error as err:
print(f"Error: {err}")
finally:
if cnx:
cursor.close()
cnx.close()
# Example configuration
config = {
'user': 'your_user',
'password': 'your_password',
'host': 'your_host',
'database': 'performance_schema'
}
# Run data collection periodically
while True:
collect_performance_data(config)
time.sleep(60) # Collect data every 60 seconds
这个Python脚本会定期从Performance Schema中采集SQL语句执行时间、锁等待信息和IO信息,并将数据打印到控制台。你需要根据实际需求修改SQL语句和数据处理逻辑。
四、数据存储模块
数据存储模块负责存储采集到的数据。可以选择MySQL自身或其他时序数据库。
1. 使用MySQL存储:
可以在MySQL中创建一个专门用于存储监控数据的数据库和表。例如:
CREATE DATABASE IF NOT EXISTS performance_monitoring;
USE performance_monitoring;
CREATE TABLE IF NOT EXISTS slow_queries (
id INT AUTO_INCREMENT PRIMARY KEY,
collect_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
digest_text TEXT,
count_star BIGINT,
sum_timer_wait BIGINT,
avg_timer_wait BIGINT,
first_seen TIMESTAMP,
last_seen TIMESTAMP
);
CREATE TABLE IF NOT EXISTS lock_waits (
id INT AUTO_INCREMENT PRIMARY KEY,
collect_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
event_name VARCHAR(255),
count_star BIGINT,
sum_timer_wait BIGINT,
avg_timer_wait BIGINT
);
CREATE TABLE IF NOT EXISTS file_io (
id INT AUTO_INCREMENT PRIMARY KEY,
collect_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
file_name VARCHAR(255),
count_read BIGINT,
sum_number_of_bytes_read BIGINT,
count_write BIGINT,
sum_number_of_bytes_write BIGINT
);
然后,修改数据采集脚本,将采集到的数据插入到这些表中。
修改后的Python脚本示例(插入数据到MySQL):
import mysql.connector
import time
def collect_performance_data(config):
"""
Collects performance data from MySQL Performance Schema and stores it in a separate MySQL database.
"""
try:
cnx_ps = mysql.connector.connect(**config) # Connection to Performance Schema
cursor_ps = cnx_ps.cursor(dictionary=True)
# Configuration for the monitoring database
monitoring_config = {
'user': 'monitoring_user',
'password': 'monitoring_password',
'host': 'monitoring_host',
'database': 'performance_monitoring'
}
cnx_mon = mysql.connector.connect(**monitoring_config) # Connection to Monitoring Database
cursor_mon = cnx_mon.cursor()
# SQL to collect slow query information
slow_query_sql = """
SELECT
DIGEST_TEXT,
COUNT_STAR,
SUM_TIMER_WAIT,
AVG_TIMER_WAIT,
FIRST_SEEN,
LAST_SEEN
FROM
performance_schema.events_statements_summary_by_digest
WHERE
COUNT_STAR > 0
ORDER BY
SUM_TIMER_WAIT DESC
LIMIT 10;
"""
# SQL to collect lock wait information
lock_wait_sql = """
SELECT
EVENT_NAME,
COUNT_STAR,
SUM_TIMER_WAIT,
AVG_TIMER_WAIT
FROM
performance_schema.events_waits_summary_global_by_event_name
WHERE
EVENT_NAME LIKE 'wait/lock/%'
ORDER BY
SUM_TIMER_WAIT DESC
LIMIT 10;
"""
# SQL to collect file IO information
file_io_sql = """
SELECT
FILE_NAME,
COUNT_READ,
SUM_NUMBER_OF_BYTES_READ,
COUNT_WRITE,
SUM_NUMBER_OF_BYTES_WRITE
FROM
performance_schema.file_summary_by_instance
ORDER BY
SUM_NUMBER_OF_BYTES_READ DESC
LIMIT 10;
"""
# Execute queries
cursor_ps.execute(slow_query_sql)
slow_queries = cursor_ps.fetchall()
cursor_ps.execute(lock_wait_sql)
lock_waits = cursor_ps.fetchall()
cursor_ps.execute(file_io_sql)
file_ios = cursor_ps.fetchall()
# Insert data into monitoring tables
for row in slow_queries:
insert_sql = """
INSERT INTO slow_queries (digest_text, count_star, sum_timer_wait, avg_timer_wait, first_seen, last_seen)
VALUES (%s, %s, %s, %s, %s, %s)
"""
values = (row['DIGEST_TEXT'], row['COUNT_STAR'], row['SUM_TIMER_WAIT'], row['AVG_TIMER_WAIT'], row['FIRST_SEEN'], row['LAST_SEEN'])
cursor_mon.execute(insert_sql, values)
for row in lock_waits:
insert_sql = """
INSERT INTO lock_waits (event_name, count_star, sum_timer_wait, avg_timer_wait)
VALUES (%s, %s, %s, %s)
"""
values = (row['EVENT_NAME'], row['COUNT_STAR'], row['SUM_TIMER_WAIT'], row['AVG_TIMER_WAIT'])
cursor_mon.execute(insert_sql, values)
for row in file_ios:
insert_sql = """
INSERT INTO file_io (file_name, count_read, sum_number_of_bytes_read, count_write, sum_number_of_bytes_write)
VALUES (%s, %s, %s, %s, %s)
"""
values = (row['FILE_NAME'], row['COUNT_READ'], row['SUM_NUMBER_OF_BYTES_READ'], row['COUNT_WRITE'], row['SUM_NUMBER_OF_BYTES_WRITE'])
cursor_mon.execute(insert_sql, values)
cnx_mon.commit() # Commit changes
print("Data inserted into monitoring database successfully.")
except mysql.connector.Error as err:
print(f"Error: {err}")
finally:
if cursor_ps:
cursor_ps.close()
if cnx_ps:
cnx_ps.close()
if cursor_mon:
cursor_mon.close()
if cnx_mon:
cnx_mon.close()
# Example configuration
config = {
'user': 'your_user',
'password': 'your_password',
'host': 'your_host',
'database': 'performance_schema'
}
# Run data collection periodically
while True:
collect_performance_data(config)
time.sleep(60) # Collect data every 60 seconds
2. 使用时序数据库(InfluxDB)存储:
InfluxDB是专门为存储时序数据而设计的数据库,具有高写入性能和强大的时间序列分析能力。
首先,需要安装和配置InfluxDB。然后,可以使用InfluxDB的Python客户端库将数据写入到InfluxDB中。
安装 InfluxDB Python 客户端:
pip install influxdb
修改后的Python脚本示例(插入数据到InfluxDB):
import mysql.connector
import time
from influxdb import InfluxDBClient
def collect_performance_data(config):
"""
Collects performance data from MySQL Performance Schema and stores it in InfluxDB.
"""
try:
cnx = mysql.connector.connect(**config)
cursor = cnx.cursor(dictionary=True)
# SQL to collect slow query information
slow_query_sql = """
SELECT
DIGEST_TEXT,
COUNT_STAR,
SUM_TIMER_WAIT,
AVG_TIMER_WAIT,
FIRST_SEEN,
LAST_SEEN
FROM
performance_schema.events_statements_summary_by_digest
WHERE
COUNT_STAR > 0
ORDER BY
SUM_TIMER_WAIT DESC
LIMIT 10;
"""
# SQL to collect lock wait information
lock_wait_sql = """
SELECT
EVENT_NAME,
COUNT_STAR,
SUM_TIMER_WAIT,
AVG_TIMER_WAIT
FROM
performance_schema.events_waits_summary_global_by_event_name
WHERE
EVENT_NAME LIKE 'wait/lock/%'
ORDER BY
SUM_TIMER_WAIT DESC
LIMIT 10;
"""
# SQL to collect file IO information
file_io_sql = """
SELECT
FILE_NAME,
COUNT_READ,
SUM_NUMBER_OF_BYTES_READ,
COUNT_WRITE,
SUM_NUMBER_OF_BYTES_WRITE
FROM
performance_schema.file_summary_by_instance
ORDER BY
SUM_NUMBER_OF_BYTES_READ DESC
LIMIT 10;
"""
# Execute queries
cursor.execute(slow_query_sql)
slow_queries = cursor.fetchall()
cursor.execute(lock_wait_sql)
lock_waits = cursor.fetchall()
cursor.execute(file_io_sql)
file_ios = cursor.fetchall()
# Prepare data for InfluxDB
influxdb_data = []
for row in slow_queries:
influxdb_data.append({
"measurement": "slow_queries",
"tags": {
"digest_text": row['DIGEST_TEXT']
},
"time": time.time_ns(), # Nanoseconds
"fields": {
"count_star": row['COUNT_STAR'],
"sum_timer_wait": row['SUM_TIMER_WAIT'],
"avg_timer_wait": row['AVG_TIMER_WAIT']
}
})
for row in lock_waits:
influxdb_data.append({
"measurement": "lock_waits",
"tags": {
"event_name": row['EVENT_NAME']
},
"time": time.time_ns(), # Nanoseconds
"fields": {
"count_star": row['COUNT_STAR'],
"sum_timer_wait": row['SUM_TIMER_WAIT'],
"avg_timer_wait": row['AVG_TIMER_WAIT']
}
})
for row in file_ios:
influxdb_data.append({
"measurement": "file_io",
"tags": {
"file_name": row['FILE_NAME']
},
"time": time.time_ns(), # Nanoseconds
"fields": {
"count_read": row['COUNT_READ'],
"sum_number_of_bytes_read": row['SUM_NUMBER_OF_BYTES_READ'],
"count_write": row['COUNT_WRITE'],
"sum_number_of_bytes_write": row['SUM_NUMBER_OF_BYTES_WRITE']
}
})
# Write data to InfluxDB
influx_client = InfluxDBClient(host='your_influxdb_host', port=8086, database='performance_monitoring')
influx_client.write_points(influxdb_data)
print("Data written to InfluxDB successfully.")
except mysql.connector.Error as err:
print(f"MySQL Error: {err}")
except Exception as e:
print(f"InfluxDB Error: {e}")
finally:
if cnx:
cursor.close()
cnx.close()
# Example configuration
config = {
'user': 'your_user',
'password': 'your_password',
'host': 'your_host',
'database': 'performance_schema'
}
# Run data collection periodically
while True:
collect_performance_data(config)
time.sleep(60) # Collect data every 60 seconds
五、数据分析模块
数据分析模块负责分析存储的数据,计算性能指标。可以编写SQL语句或使用Python等编程语言进行分析。
示例:使用SQL分析慢查询
如果数据存储在MySQL中,可以使用以下SQL语句查询过去5分钟内执行时间超过1秒的SQL语句:
SELECT
digest_text,
COUNT(*) AS execution_count,
AVG(sum_timer_wait) AS avg_execution_time
FROM
slow_queries
WHERE
collect_time >= NOW() - INTERVAL 5 MINUTE
AND sum_timer_wait > 1000000000000 -- 1 second in picoseconds
GROUP BY
digest_text
ORDER BY
avg_execution_time DESC;
示例:使用InfluxDB分析锁等待
如果数据存储在InfluxDB中,可以使用以下InfluxQL查询过去5分钟内锁等待时间超过100毫秒的事件:
SELECT
mean(sum_timer_wait)
FROM
lock_waits
WHERE
time >= now() - 5m
AND sum_timer_wait > 100000000000 -- 100 milliseconds in picoseconds
GROUP BY
event_name;
六、预警模块
预警模块负责根据预设的阈值,触发预警。可以编写Python脚本或其他工具来实现预警功能。
示例:Python预警脚本
import mysql.connector
import time
import smtplib
from email.mime.text import MIMEText
def check_slow_queries(config, threshold):
"""
Checks for slow queries in the last 5 minutes and sends an alert if the threshold is exceeded.
"""
try:
cnx = mysql.connector.connect(**config)
cursor = cnx.cursor()
sql = """
SELECT
digest_text,
COUNT(*) AS execution_count,
AVG(sum_timer_wait) AS avg_execution_time
FROM
slow_queries
WHERE
collect_time >= NOW() - INTERVAL 5 MINUTE
AND sum_timer_wait > %s -- Threshold in picoseconds
GROUP BY
digest_text
ORDER BY
avg_execution_time DESC;
"""
cursor.execute(sql, (threshold,))
slow_queries = cursor.fetchall()
if slow_queries:
# Send alert email
send_alert_email(slow_queries)
except mysql.connector.Error as err:
print(f"Error: {err}")
finally:
if cnx:
cursor.close()
cnx.close()
def send_alert_email(slow_queries):
"""
Sends an alert email with information about slow queries.
"""
sender_email = "[email protected]"
receiver_email = "[email protected]"
password = "your_email_password"
message = MIMEText(f"Slow queries detected:n{slow_queries}")
message['Subject'] = "MySQL Slow Query Alert"
message['From'] = sender_email
message['To'] = receiver_email
try:
with smtplib.SMTP_SSL('smtp.gmail.com', 465) as server:
server.login(sender_email, password)
server.sendmail(sender_email, receiver_email, message.as_string())
print("Alert email sent successfully.")
except Exception as e:
print(f"Error sending email: {e}")
# Example configuration
config = {
'user': 'monitoring_user',
'password': 'monitoring_password',
'host': 'monitoring_host',
'database': 'performance_monitoring'
}
# Threshold for slow query (1 second in picoseconds)
threshold = 1000000000000
# Run check periodically
while True:
check_slow_queries(config, threshold)
time.sleep(60) # Check every 60 seconds
这个脚本会定期检查过去5分钟内是否存在执行时间超过1秒的SQL语句,如果存在,则发送警报邮件。
七、展示模块
展示模块负责展示监控数据和预警信息。可以使用Grafana等可视化工具,也可以自定义Web界面。
Grafana:
Grafana是一个流行的开源数据可视化工具,可以连接到MySQL或InfluxDB,并创建各种图表和仪表盘来展示监控数据。
自定义Web界面:
可以使用Python的Flask或Django框架,搭建一个Web界面来展示监控数据和预警信息。
八、Performance Schema 配置优化
默认情况下,Performance Schema的所有instrumentation都是禁用的。我们需要根据监控需求,启用特定的instrumentation。
1. 启用Instrumentation:
可以使用以下SQL语句启用instrumentation:
UPDATE performance_schema.setup_instruments SET ENABLED = 'YES' WHERE NAME LIKE '%statement/%';
UPDATE performance_schema.setup_instruments SET ENABLED = 'YES' WHERE NAME LIKE '%wait/lock/%';
UPDATE performance_schema.setup_instruments SET ENABLED = 'YES' WHERE NAME LIKE '%file/%';
2. 调整Consumer配置:
可以使用以下SQL语句调整consumer配置:
UPDATE performance_schema.setup_consumers SET ENABLED = 'YES' WHERE NAME LIKE '%statement/%';
UPDATE performance_schema.setup_consumers SET ENABLED = 'YES' WHERE NAME LIKE '%wait/lock/%';
UPDATE performance_schema.setup_consumers SET ENABLED = 'YES' WHERE NAME LIKE '%file/%';
3. 调整History Size:
Performance Schema的表都有一个history size,用于控制存储多少历史数据。可以根据需要调整history size。例如:
SET GLOBAL events_statements_history_long_size = 10000;
九、总结:构建实时监控,保障MySQL健康
通过以上步骤,我们就能够构建一个基于MySQL Performance Schema的实时性能监控与预警系统。这个系统可以帮助我们深入了解MySQL服务器的运行状态,及时发现和解决性能问题,保障MySQL服务器的稳定运行。
十、一些优化建议
- 定期清理监控数据: 为了避免监控数据占用过多的存储空间,需要定期清理不再需要的数据。
- 设置合理的预警阈值: 预警阈值设置过高可能会导致错过一些重要的告警,设置过低可能会导致误报。需要根据实际情况设置合理的预警阈值。
- 优化SQL语句: 确保用于采集和分析数据的SQL语句是高效的,避免对MySQL服务器造成额外的负担。
- 监控Performance Schema的开销: Performance Schema虽然设计为低开销,但过度使用仍然可能对MySQL服务器的性能产生影响。需要定期监控Performance Schema的开销,并根据需要调整配置。
希望今天的分享能帮助大家更好地利用MySQL Performance Schema进行性能监控和调优。 谢谢大家。