终极思考:当 Agent 能够动态修改自己的 LangGraph 拓扑结构时,我们是否已经触碰到了 AGI 的雏形? 各位同仁,各位对人工智能未来充满好奇的探索者们,大家好。今天,我们将共同深入探讨一个引人深思且极具前瞻性的议题:当一个基于大语言模型(LLM)的 Agent 不仅仅是按照预设流程执行任务,而是能够根据环境、经验和目标动态地修改其自身的 LangGraph 拓扑结构时,这是否意味着我们已经触碰到了通用人工智能(AGI)的最初萌芽? LangGraph 作为 LangChain 生态中一个强大的框架,为我们构建复杂、有状态、多步骤的 LLM Agent 提供了坚实的基础。它将 Agent 的工作流程抽象为一张图,节点代表各种操作(如调用LLM、使用工具、执行自定义逻辑),边则定义了这些操作之间的转换逻辑。然而,我们今天所讨论的,将超越当前 LangGraph 的普遍应用模式,深入到 Agent 能够“自我重构”的未来。 1. LangGraph 的静态之美:当前 Agent 的架构基石 在深入探讨动态修改之前,我们必须首先理解 LangGraph 的当前范式——静态定义。在 …
继续阅读“终极思考:当 Agent 能够动态修改自己的 LangGraph 拓扑结构时,我们是否已经触碰到了 AGI 的雏形?”