JAVA 长连接推理网关:流式生成能力实现
大家好,今天我们来探讨如何使用 Java 构建一个支持长连接,并具备持续输出流式生成能力的推理网关。这个网关的核心目标是能够与后端推理服务建立持久连接,并通过该连接实时地将推理结果以流的形式推送给客户端,从而提升用户体验,特别是在需要实时反馈的场景下,例如实时语音识别、实时文本生成等。
1. 需求分析与架构设计
在开始编码之前,我们需要明确需求,并设计一个清晰的架构。
需求:
- 长连接支持: 网关需要能够与客户端和后端推理服务建立持久连接,避免频繁的连接建立和断开。
- 流式生成能力: 推理结果需要能够以流的形式实时推送给客户端,而不是等待所有结果生成完毕后再发送。
- 高并发支持: 网关需要能够处理大量的并发连接请求。
- 可扩展性: 架构需要具有一定的扩展性,方便后续增加新的推理服务或功能。
- 容错性: 网关需要具备一定的容错能力,能够在后端推理服务出现故障时进行处理。
架构设计:
我们将采用基于Netty的Reactor模式来实现网关。Netty是一个高性能的异步事件驱动的网络应用框架,非常适合构建高并发的网络应用。Reactor模式可以有效地处理并发连接,提高系统的吞吐量。
整体架构如下:
+-------------------+ +-------------------+ +-------------------+
| Client |----->| Netty Gateway |----->| Inference Server |
+-------------------+ +-------------------+ +-------------------+
| | | |
| - Connection Pool | | - Inference Logic|
| - Request Handler | | - Model Loading |
| - Response Streamer| | - Result Streaming|
+----------------------+ +-------------------+
- Client: 客户端,可以是浏览器、移动应用或其他服务。
- Netty Gateway: 基于 Netty 构建的网关,负责接收客户端请求,建立长连接,并将请求转发给后端推理服务。同时,负责接收推理服务返回的流式结果,并将结果推送给客户端。
- Inference Server: 后端推理服务,负责执行推理计算,并将结果以流的形式返回给网关。
组件说明:
- Connection Pool: 管理与后端推理服务的连接,避免频繁创建和销毁连接。
- Request Handler: 处理客户端请求,并将请求转换为后端推理服务所需的格式。
- Response Streamer: 负责将后端推理服务返回的流式结果推送给客户端。
- Inference Logic: 执行具体的推理逻辑,例如文本生成、图像识别等。
- Model Loading: 加载推理模型。
- Result Streaming: 将推理结果以流的形式返回给网关。
2. 核心模块实现
接下来,我们来实现网关的核心模块。
2.1 Netty Server Bootstrap
首先,我们需要创建一个 Netty Server Bootstrap,用于启动 Netty 服务器。
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelOption;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.handler.codec.http.HttpObjectAggregator;
import io.netty.handler.codec.http.HttpServerCodec;
import io.netty.handler.logging.LogLevel;
import io.netty.handler.logging.LoggingHandler;
public class InferenceGatewayServer {
private final int port;
public InferenceGatewayServer(int port) {
this.port = port;
}
public void run() throws Exception {
EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
try {
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.option(ChannelOption.SO_BACKLOG, 128)
.handler(new LoggingHandler(LogLevel.INFO))
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
public void initChannel(SocketChannel ch) throws Exception {
ch.pipeline().addLast(
new HttpServerCodec(),
new HttpObjectAggregator(65536),
new InferenceGatewayHandler()); // Our handler
}
})
.childOption(ChannelOption.SO_KEEPALIVE, true);
// Bind and start to accept incoming connections.
ChannelFuture f = b.bind(port).sync();
// Wait until the server socket is closed.
// In this example, this does not happen, but you can do that to gracefully
// shut down your server.
f.channel().closeFuture().sync();
} finally {
workerGroup.shutdownGracefully();
bossGroup.shutdownGracefully();
}
}
public static void main(String[] args) throws Exception {
int port = 8080;
new InferenceGatewayServer(port).run();
}
}
这段代码创建了一个 Netty Server,监听指定的端口。HttpServerCodec 用于处理 HTTP 协议的编解码,HttpObjectAggregator 用于将多个 HTTP 消息聚合成一个完整的 HTTP 请求。InferenceGatewayHandler 是我们自定义的 Handler,负责处理具体的业务逻辑。
2.2 InferenceGatewayHandler
InferenceGatewayHandler 负责接收客户端请求,并将请求转发给后端推理服务。同时,它还负责接收推理服务返回的流式结果,并将结果推送给客户端。
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.ChannelFutureListener;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler;
import io.netty.handler.codec.http.*;
import io.netty.util.CharsetUtil;
import java.net.URI;
import java.nio.charset.StandardCharsets;
import java.util.concurrent.CompletableFuture;
public class InferenceGatewayHandler extends SimpleChannelInboundHandler<FullHttpRequest> {
private static final String INFERENCE_ENDPOINT = "/inference";
private static final String UPSTREAM_URL = "http://localhost:8081/stream"; // Replace with your inference server URL
@Override
public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
ctx.flush();
}
@Override
protected void channelRead0(ChannelHandlerContext ctx, FullHttpRequest req) throws Exception {
URI uri = new URI(req.uri());
if (!uri.getPath().equals(INFERENCE_ENDPOINT)) {
sendError(ctx, HttpResponseStatus.NOT_FOUND);
return;
}
if (req.method() != HttpMethod.POST) {
sendError(ctx, HttpResponseStatus.METHOD_NOT_ALLOWED);
return;
}
// Extract the request body and forward it to the inference server
ByteBuf content = req.content();
String requestBody = content.toString(CharsetUtil.UTF_8);
// Asynchronously call the inference service and stream the results back to the client
CompletableFuture<Void> inferenceFuture = forwardRequestAndStreamResponse(ctx, requestBody);
inferenceFuture.exceptionally(e -> {
System.err.println("Error during inference: " + e.getMessage());
sendError(ctx, HttpResponseStatus.INTERNAL_SERVER_ERROR);
return null;
});
}
private CompletableFuture<Void> forwardRequestAndStreamResponse(ChannelHandlerContext ctx, String requestBody) {
return CompletableFuture.runAsync(() -> {
try {
// Simulate a streaming response from the inference server (replace with actual logic)
//This will call a real service that sends streaming data
simulateStreamingResponse(ctx, requestBody);
} catch (Exception e) {
System.err.println("Error simulating streaming response: " + e.getMessage());
throw new RuntimeException(e); // Re-throw the exception to be handled by exceptionally()
}
});
}
private void simulateStreamingResponse(ChannelHandlerContext ctx, String requestBody) throws Exception {
// Send the initial HTTP response header with chunked transfer encoding
FullHttpResponse response = new DefaultFullHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.OK);
response.headers().set(HttpHeaderNames.TRANSFER_ENCODING, HttpHeaderValues.CHUNKED);
response.headers().set(HttpHeaderNames.CONTENT_TYPE, "text/plain; charset=UTF-8");
ctx.write(response);
// Simulate sending chunks of data
String[] chunks = {"Chunk 1: Initializing...n", "Chunk 2: Processing data...n", "Chunk 3: Generating results...n", "Chunk 4: Finalizing...n"};
for (String chunk : chunks) {
ByteBuf content = Unpooled.copiedBuffer(chunk, StandardCharsets.UTF_8);
LastHttpContent lastContent = new DefaultLastHttpContent(content); //Used LastHttpContent instead of HttpContent
ctx.writeAndFlush(lastContent);
Thread.sleep(500); // Simulate processing time
}
// Send the last HTTP content to indicate the end of the stream.
// ctx.writeAndFlush(LastHttpContent.EMPTY_LAST_CONTENT).addListener(ChannelFutureListener.CLOSE); // removed closing listener
System.out.println("Streaming simulation complete for this request.");
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {
cause.printStackTrace();
ctx.close();
}
private static void sendError(ChannelHandlerContext ctx, HttpResponseStatus status) {
FullHttpResponse response = new DefaultFullHttpResponse(
HttpVersion.HTTP_1_1, status, Unpooled.copiedBuffer("Failure: " + status + "rn", CharsetUtil.UTF_8));
response.headers().set(HttpHeaderNames.CONTENT_TYPE, "text/plain; charset=UTF-8");
// Close the connection as soon as the error message is sent.
ctx.writeAndFlush(response).addListener(ChannelFutureListener.CLOSE);
}
}
这段代码接收客户端的 POST 请求,并将请求体转发给后端推理服务。forwardRequestAndStreamResponse 方法模拟了从推理服务接收流式结果,并将结果分块发送给客户端。 simulateStreamingResponse 方法模拟了推理服务的行为。
关键点:
- Chunked Transfer Encoding: 使用
HttpHeaderNames.TRANSFER_ENCODING和HttpHeaderValues.CHUNKED来启用 Chunked Transfer Encoding,允许我们以流的形式发送数据。 - LastHttpContent: 使用
LastHttpContent来标记流的结束。 - Asynchronous Processing: 使用
CompletableFuture来异步地处理请求,避免阻塞 Netty 的 EventLoop 线程。
2.3 模拟的后端推理服务 (Inference Server)
为了完整起见,我们提供一个简单的模拟后端推理服务,它接收请求并流式地返回结果。
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.handler.codec.http.*;
import io.netty.util.CharsetUtil;
import java.nio.charset.StandardCharsets;
public class MockInferenceServer {
private final int port;
public MockInferenceServer(int port) {
this.port = port;
}
public void run() throws Exception {
EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
try {
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) throws Exception {
ch.pipeline().addLast(
new HttpServerCodec(),
new HttpObjectAggregator(65536),
new MockInferenceHandler());
}
})
.option(ChannelOption.SO_BACKLOG, 128)
.childOption(ChannelOption.SO_KEEPALIVE, true);
ChannelFuture f = b.bind(port).sync();
f.channel().closeFuture().sync();
} finally {
workerGroup.shutdownGracefully();
bossGroup.shutdownGracefully();
}
}
public static void main(String[] args) throws Exception {
int port = 8081;
new MockInferenceServer(port).run();
}
private static class MockInferenceHandler extends SimpleChannelInboundHandler<FullHttpRequest> {
@Override
protected void channelRead0(ChannelHandlerContext ctx, FullHttpRequest req) throws Exception {
if (!req.uri().equals("/stream")) {
sendError(ctx, HttpResponseStatus.NOT_FOUND);
return;
}
if (req.method() != HttpMethod.POST) {
sendError(ctx, HttpResponseStatus.METHOD_NOT_ALLOWED);
return;
}
// Simulate streaming response
sendStreamingResponse(ctx);
}
private void sendStreamingResponse(ChannelHandlerContext ctx) throws Exception {
// Send initial headers
FullHttpResponse response = new DefaultFullHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.OK);
response.headers().set(HttpHeaderNames.TRANSFER_ENCODING, HttpHeaderValues.CHUNKED);
response.headers().set(HttpHeaderNames.CONTENT_TYPE, "text/plain; charset=UTF-8");
ctx.write(response);
// Send chunks of data
String[] chunks = {"Inference: Starting...n", "Inference: Processing...n", "Inference: Generating...n", "Inference: Complete!n"};
for (String chunk : chunks) {
ByteBuf content = Unpooled.copiedBuffer(chunk, StandardCharsets.UTF_8);
LastHttpContent lastContent = new DefaultLastHttpContent(content);
ctx.writeAndFlush(lastContent);
Thread.sleep(500); // Simulate processing time
}
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {
cause.printStackTrace();
ctx.close();
}
private void sendError(ChannelHandlerContext ctx, HttpResponseStatus status) {
FullHttpResponse response = new DefaultFullHttpResponse(
HttpVersion.HTTP_1_1, status, Unpooled.copiedBuffer("Failure: " + status + "rn", CharsetUtil.UTF_8));
response.headers().set(HttpHeaderNames.CONTENT_TYPE, "text/plain; charset=UTF-8");
ctx.writeAndFlush(response).addListener(ChannelFutureListener.CLOSE);
}
}
}
这个模拟服务监听 8081 端口,并响应 /stream 路径的 POST 请求。它使用 Chunked Transfer Encoding 将模拟的推理结果分块发送给客户端。
3. 连接池的实现 (Connection Pool)
为了提高性能,我们可以使用连接池来管理与后端推理服务的连接。这里提供一个简单的基于 Apache HttpClient 的连接池示例。
import org.apache.http.client.config.RequestConfig;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClientBuilder;
import org.apache.http.impl.conn.PoolingHttpClientConnectionManager;
import java.util.concurrent.TimeUnit;
public class HttpClientPool {
private static final PoolingHttpClientConnectionManager connectionManager;
private static final CloseableHttpClient httpClient;
static {
connectionManager = new PoolingHttpClientConnectionManager();
connectionManager.setMaxTotal(200);
connectionManager.setDefaultMaxPerRoute(20);
RequestConfig requestConfig = RequestConfig.custom()
.setConnectTimeout(5000) // Connection timeout
.setSocketTimeout(30000) // Socket timeout
.build();
httpClient = HttpClientBuilder.create()
.setConnectionManager(connectionManager)
.setDefaultRequestConfig(requestConfig)
.build();
// Idle connection monitor thread
Thread idleConnectionMonitor = new Thread(() -> {
try {
while (!Thread.currentThread().isInterrupted()) {
synchronized (this) {
wait(5000);
// Close expired connections
connectionManager.closeExpiredConnections();
// Optionally, close connections that have been idle longer than 30 sec
connectionManager.closeIdleConnections(30, TimeUnit.SECONDS);
}
}
} catch (InterruptedException ex) {
// terminate
}
});
idleConnectionMonitor.start();
}
public static CloseableHttpClient getHttpClient() {
return httpClient;
}
public static void close() {
try {
httpClient.close();
connectionManager.shutdown();
} catch (Exception e) {
e.printStackTrace();
}
}
}
这个连接池使用了 PoolingHttpClientConnectionManager 来管理连接,并定期清理过期和空闲的连接。 getHttpClient() 方法用于获取 HttpClient 实例。
使用连接池:
在 InferenceGatewayHandler 中,我们可以使用连接池来发送请求到后端推理服务。
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.util.EntityUtils;
// Inside forwardRequestAndStreamResponse method in InferenceGatewayHandler
CloseableHttpClient httpClient = HttpClientPool.getHttpClient();
HttpPost httpPost = new HttpPost(UPSTREAM_URL);
httpPost.setEntity(new StringEntity(requestBody));
try (org.apache.http.client.methods.CloseableHttpResponse response = httpClient.execute(httpPost)) {
// Process the response and stream the results back to the client
// This part requires more detailed implementation to handle streaming responses from HttpClient
String responseBody = EntityUtils.toString(response.getEntity()); //This is not streaming
//The streaming implementation needs to parse the response as a stream.
System.out.println("Response from inference server: " + responseBody);
} catch (Exception e) {
//Handle the exception
}
注意: 这段代码只是一个示例。要实现真正的流式处理,需要使用 HttpClient 的流式 API,例如 InputStreamEntity,并逐块读取后端推理服务返回的数据。
4. 错误处理和容错机制
在实际应用中,我们需要考虑错误处理和容错机制,以提高系统的稳定性。
错误处理:
- 在
InferenceGatewayHandler中,捕获异常并发送错误响应给客户端。 - 在连接池中,处理连接超时、IO 异常等。
容错机制:
- 重试机制: 在请求后端推理服务失败时,可以进行重试。
- 熔断机制: 当后端推理服务出现大量错误时,可以暂时停止向其发送请求,防止系统雪崩。
- 降级机制: 当后端推理服务不可用时,可以返回预定义的默认结果。
5. 扩展性考虑
为了方便后续扩展,我们可以采用以下措施:
- 插件化架构: 将不同的推理服务实现为插件,方便动态加载和卸载。
- 配置中心: 使用配置中心来管理网关的配置信息,例如后端推理服务的地址、连接池的大小等。
- 服务发现: 使用服务发现机制来动态地发现后端推理服务。
6. 总结一些想法
通过上述步骤,我们构建了一个基于 Java 和 Netty 的长连接推理网关,并实现了流式生成能力。该网关能够处理高并发请求,并将推理结果实时推送给客户端,提升用户体验。 实际应用中,需要根据具体需求进行调整和优化,例如实现更完善的连接池、错误处理和容错机制,以及支持更多的推理服务。 通过模块化设计和灵活的配置,可以构建一个可扩展、高性能的推理网关。