大家好, 今天,我们将深入探讨一个在构建复杂AI系统,特别是基于大型语言模型(LLM)的多智能体或多步骤工作流中日益重要的话题:资源消耗管理。随着AI能力的飞速发展,我们能够构建出越来越智能、越来越自主的系统。然而,这种能力也伴随着潜在的挑战:失控的资源消耗,尤其是计算资源和API调用成本。 我们的主题是解析“The Token Budgeting Circuit”,核心问题是如何在这样的“电路”中,为每个子任务分配硬性的“价值配额”,从而有效防止资源失控消耗。作为一名编程专家,我将带大家从理论到实践,通过严谨的逻辑和丰富的代码示例,构建一个健壮的资源管理框架。 1. 资源管理:复杂AI系统的生命线 在传统的软件开发中,我们对内存、CPU周期、网络带宽等资源有着成熟的管理机制。但在现代AI系统中,特别是涉及到与外部API(如LLM API)交互时,资源的概念变得更加抽象,也更加直接地与成本挂钩。这里的“资源”不仅仅是传统的计算资源,更常常指的是LLM的token消耗、外部API的调用次数、甚至是等待时间或人工审核成本。 一个典型的AI工作流可能由多个相互协作的子任务组成:一个代理负责理 …
继续阅读“解析 ‘The Token Budgeting Circuit’:如何在图中为每个子任务分配硬性的‘价值配额’以防止失控消耗?”