MoE 专家负载均衡损失:Auxiliary Loss 权重对训练稳定性的影响 大家好,今天我们来深入探讨一下混合专家模型 (Mixture-of-Experts, MoE) 中一个关键的训练技巧:负载均衡损失 (Load Balancing Loss)。具体来说,我们将聚焦于辅助损失 (Auxiliary Loss) 的权重对训练稳定性的影响。MoE 模型以其能够有效扩展模型容量而著称,但其训练的复杂性也不容忽视。负载均衡损失是保证 MoE 模型有效性的重要因素,而辅助损失权重的选择,直接关系到模型能否稳定收敛,以及最终的性能表现。 1. MoE 模型架构概览 首先,我们简要回顾一下 MoE 模型的架构。一个典型的 MoE 层由以下几个核心组件构成: Experts (专家): 这是一些独立的神经网络模块,例如前馈网络 (Feed-Forward Network, FFN)。每个专家负责处理输入数据的一个特定子集。 Gate (门控网络): 门控网络接收输入数据,并决定将数据路由到哪个或哪些专家。它输出一个概率分布,表示每个专家被选中的概率。 Combination Function …
继续阅读“MoE专家的负载均衡损失(Load Balancing Loss):Auxiliary Loss权重对训练稳定性的影响”