各位同仁、技术爱好者们,
今天,我们将深入探索一个令人兴奋且极具潜力的领域——零知识证明(Zero-Knowledge Proofs, ZKP),并聚焦于其在高性能递归验证方面的应用。我们将特别关注如何利用 Go 语言,构建能够实现渐进复杂度为 $O(log n)$ 的递归证明验证逻辑。这不仅仅是理论探讨,更是一次深入代码层面的实践,旨在揭示 ZKP 如何在区块链、隐私计算等前沿领域中实现前所未有的可扩展性和隐私保护。
零知识证明:基本概念与核心原理
在深入递归验证之前,我们先快速回顾一下零知识证明的核心概念。一个零知识证明系统允许一个证明者(Prover)向一个验证者(Verifier)证明某个陈述(Statement)是真实的,而无需透露任何关于该陈述内容的额外信息。
核心特性:
- 完备性 (Completeness): 如果陈述为真,并且证明者和验证者都遵循协议,那么验证者将确信陈述为真。
- 可靠性 (Soundness): 如果陈述为假,那么任何恶意证明者都无法欺骗验证者,使其相信陈述为真(除非以极低的概率成功)。
- 零知识性 (Zero-Knowledge): 如果陈述为真,验证者除了知道陈述为真之外,无法从证明过程中获取任何其他信息。
ZKP 的演进:从交互式到非交互式
早期的 ZKP 大多是交互式的,需要证明者和验证者之间进行多轮通信。为了适应实际应用(如区块链),非交互式零知识证明(NIZK)变得至关重要。NIZK 允许证明者生成一个可以独立验证的单一证明,无需与验证者进行实时交互。
目前主流的非交互式 ZKP 系统主要分为两大家族:
- SNARKs (Succinct Non-interactive ARguments of Knowledge): 简洁、非交互式、知识论证。它们通常具有非常小的证明大小和极快的验证时间,但生成证明的计算成本较高,并且通常需要一个可信设置(Trusted Setup)。
- STARKs (Scalable Transparent ARguments of Knowledge): 可扩展、透明、知识论证。它们不需要可信设置,并且在某些情况下可以生成更大的电路,但证明大小和验证时间通常比 SNARKs 稍大。
在本文中,我们主要关注 SNARKs 的范式,因为其简洁的验证特性是实现 $O(log n)$ 递归验证的关键。
为什么需要递归证明验证?
尽管 SNARKs 提供了非常简洁的证明和快速的验证,但它们仍然面临一些挑战,尤其是在大规模应用中:
- 证明生成成本: 随着被证明计算的复杂性(电路大小
n)增加,生成 SNARK 证明的计算成本通常是 $O(n log n)$ 甚至更高。 - 验证成本限制: 尽管单个 SNARK 证明的验证时间很短,通常是常数时间 $O(1)$ 或对数时间 $O(log n)$,但如果需要验证大量独立的证明(例如,区块链上每笔交易一个证明),累积的验证成本仍然会变得非常高昂,并可能超出区块链的区块气体(Gas)限制或处理能力。
- 链上状态压缩: 区块链需要存储大量的状态数据,这限制了其可扩展性。
递归证明验证正是为了解决这些问题而生。其核心思想是:一个零知识证明可以验证另一个零知识证明的有效性。
这意味着什么?
- 证明聚合 (Proof Aggregation): 我们可以将
k个独立的证明,聚合成一个单一的、更小的证明。这个新的证明证明了前k个证明都是有效的。 - 无限可扩展性: 通过递归,我们可以持续地将证明聚合起来。例如,一个区块的证明可以包含前一个区块的聚合证明,从而形成一个链式的、无限可扩展的证明序列。
- 链上状态压缩: 一个复杂的计算过程,其最终状态可以被一个 ZKP 证明所证明。而这个证明本身又可以被另一个 ZKP 证明所验证。最终,链上只需要存储最新的、聚合了所有历史计算的证明,而无需存储庞大的中间状态。
例如,在以太坊这样的区块链上,验证一个 ZKP 证明的成本很高(因为需要执行椭圆曲线配对等复杂操作)。如果每个交易都需要一个证明,那么整个网络的吞吐量会受到严重限制。通过递归证明验证,我们可以将成千上万个交易的证明聚合成一个最终的、可以在链上高效验证的证明。
$O(log n)$ 验证:SNARKs 的魔法
在深入 Go 实现之前,理解 SNARKs 如何实现 $O(log n)$ 甚至 $O(1)$ 的验证是至关重要的。这主要归功于其底层的多项式承诺方案(Polynomial Commitment Scheme, PCS)。
多项式承诺方案 (PCS):
一个 PCS 允许证明者“承诺”一个多项式 $P(x)$,并在之后“打开”该多项式在某个点 $z$ 的评估值 $P(z)$,同时提供一个简洁的证明。验证者无需知道整个多项式,也无需执行昂贵的多项式求值,就能验证 $P(z)$ 是否正确。
主流的 PCS 包括:
- KZG 承诺 (Kate, Zaverucha, Goldberg): 这是 SNARKs 中最常用的 PCS 之一。它利用椭圆曲线配对(Pairings)的特性。对于一个度数为
d的多项式,KZG 承诺的大小是常数,打开证明的大小也是常数。验证一个 KZG 承诺的打开证明需要常数数量的配对操作,因此验证时间是 $O(1)$。 - IPA 承诺 (Inner Product Argument): 用于 Bulletproofs 等系统中。证明大小是 $O(log d)$,验证时间也是 $O(log d)$。
SNARKs 中的 $O(log n)$ / $O(1)$ 验证:
SNARKs 的核心思想是将一个计算问题(例如,一个程序执行)转化为一个多项式可满足性问题。证明者构造一个多项式,其根对应于计算的有效执行。然后,证明者使用 PCS 对这些多项式进行承诺,并生成一个简洁的证明。
当验证者接收到证明时,它实际上是在验证:
- 这些承诺是否对某些多项式有效。
- 这些多项式在某些挑战点上的评估值是否满足特定的算术关系。
由于 PCS 允许以 $O(1)$ 或 $O(log n)$ 的成本验证多项式评估,因此整个 SNARK 证明的验证过程也继承了这种效率。通常,一个 SNARK 验证涉及:
- 解析证明和验证密钥。
- 执行一系列椭圆曲线点加法和标量乘法。
- 执行少数(通常是 1-2 对)椭圆曲线配对操作。
这些操作的数量与原始计算的复杂性 n 无关,或者只与 log n 相关。因此,我们称其为 $O(1)$ 或 $O(log n)$ 验证。
在我们的递归验证场景中,我们特别关注的是如何将这个 $O(1)$ 或 $O(log n)$ 的验证逻辑,本身也表达为一个 ZKP 电路,从而实现“证明验证证明”的能力。
Go 语言与 ZKP 生态
Go 语言以其简洁的语法、优秀的并发原语和出色的性能,在区块链和密码学领域越来越受欢迎。虽然 Go 语言标准库没有直接提供 ZKP 相关的原语,但有一些优秀的第三方库和框架正在构建 ZKP 生态,例如 gnark。
gnark 是由 ConsenSys 开发的一个用 Go 编写的 SNARK 库,它提供了一个高级 API 来定义算术电路,并支持生成和验证 Groth16、PlonK 等 SNARK 证明。我们将以 gnark 的思想作为指导,构建我们的递归验证逻辑,因为它抽象了底层的复杂密码学,让我们能够专注于电路逻辑本身。
为什么选择 Go?
- 性能: Go 的编译型语言特性和轻量级协程(Goroutines)使其在处理高并发和计算密集型任务时表现出色。ZKP 证明生成和验证涉及大量的大数运算和密码学操作,Go 的性能优势在此体现。
- 简洁性: Go 语言的语法简洁明了,易于学习和使用,有助于快速开发和维护复杂的密码学系统。
- 生态系统: 尽管 ZKP 库相对较新,但 Go 在区块链和分布式系统领域拥有成熟的生态,这使得 ZKP 方案与其他系统集成变得容易。
- 内存管理: Go 的垃圾回收机制在大多数情况下能很好地管理内存,降低了开发者的心智负担。
实现递归证明验证:核心思想与挑战
递归证明验证的核心挑战在于:如何在一个 ZKP 电路内部,表达并验证另一个 ZKP 证明?
这意味着,我们不能直接在电路中执行椭圆曲线配对这样的操作,因为这些操作本身非常复杂,会使得电路规模爆炸式增长。相反,我们需要将验证算法的每一个步骤,都转化为一组可以在 ZKP 电路中表达的算术约束。
ZKP 验证流程概览(以 Groth16 为例):
一个 Groth16 证明 π 的验证通常涉及以下步骤:
- 输入解析: 解析验证密钥
VK、证明π和公共输入publicInputs。 - 点检查: 检查证明中的椭圆曲线点是否在曲线上,并且不是无穷远点。
- 配对方程: 核心是验证一个配对方程:$e(A, B) cdot e(C, D) cdot ldots = 1$。其中 $A, B, C, D, ldots$ 是根据
VK、π和publicInputs派生出来的椭圆曲线点。这个方程的数量通常是常数(Groth16 是两个配对)。
当我们把这个验证流程嵌入到另一个 ZKP 电路中时,我们需要:
- 将
VK、π和publicInputs作为电路的私有输入 (Witnesses) 或公共输入。 - 将椭圆曲线上的点运算(加法、标量乘法)和配对运算,转换为 ZKP 友好的算术约束。
- 最终,电路的输出将是一个布尔值:
true表示验证成功,false表示失败。
这听起来很复杂,因为椭圆曲线配对本身就涉及复杂的有限域运算。幸运的是,现代 ZKP 库(如 gnark)提供了高级抽象,允许我们通过定义“电路”来表达这些操作,而无需手动编写每一个有限域约束。它们通常会提供预编译的“小工具”(Gadgets)来处理常见的密码学原语,例如椭圆曲线点运算和配对。
Go 实现:构建递归验证逻辑
我们将模拟一个简化的 SNARK 验证器,并展示如何将其逻辑表达为一个 ZKP 友好的 Go 电路。
前提假设:
- 我们使用一个抽象的
ConstraintSystem接口来代表 ZKP 电路。 - 我们不直接实现椭圆曲线配对,而是假设存在一个
pairingGadget能够将配对操作转换为电路约束。这在实际的 ZKP 库中是常见的模式。 - 我们关注的是逻辑结构,而非底层密码学原语的精确实现细节。
1. 抽象的 ZKP 电路接口
首先,我们需要一个方式来定义和添加约束。在 gnark 中,这通常通过 frontend.API 接口完成。我们将创建一个简化版:
// constraint_system.go
package zkp_recursive_verifier
import "math/big"
// Scalar represents a field element.
// In actual ZKP, this would be a big.Int modulo a prime field order.
type Scalar big.Int
// CurvePoint represents a point on an elliptic curve.
// In actual ZKP, this would be a struct with X, Y coordinates as Scalars.
type CurvePoint struct {
X Scalar
Y Scalar
}
// Variable is a placeholder for a value within the constraint system.
// In gnark, this would be frontend.Variable.
type Variable struct {
ID int // Unique ID for the variable
Value *Scalar // Runtime value, nil if not assigned
IsPublic bool
}
// ConstraintSystem defines the interface for building an arithmetic circuit.
// This is a simplified abstraction of what gnark's frontend.API provides.
type ConstraintSystem interface {
// Alloc allocates a new variable in the circuit.
// value is the witness, it can be nil for public inputs.
Alloc(value *Scalar, isPublic bool) Variable
// AddConstraint adds a constraint of the form a * b = c.
AddConstraint(a, b, c Variable, debugInfo string)
// AddLinearConstraint adds a linear constraint of the form c1*v1 + c2*v2 + ... = constant.
AddLinearConstraint(terms map[Variable]*Scalar, rhs *Scalar, debugInfo string)
// Mul performs multiplication (a * b) and returns the result as a new variable.
Mul(a, b Variable) Variable
// Add performs addition (a + b) and returns the result as a new variable.
Add(a, b Variable) Variable
// Sub performs subtraction (a - b) and returns the result as a new variable.
Sub(a, b Variable) Variable
// Neg negates a variable (-a) and returns the result.
Neg(a Variable) Variable
// Equal constrains two variables to be equal (a == b).
Equal(a, b Variable, debugInfo string)
// IsZero returns a variable that is 1 if a is zero, 0 otherwise.
IsZero(a Variable) Variable
// AssertIsEqual asserts that a == b.
AssertIsEqual(a, b Variable, debugInfo string)
// AssertIsBoolean asserts that a is either 0 or 1.
AssertIsBoolean(a Variable, debugInfo string)
// AllocateCurvePoint allocates a CurvePoint in the circuit.
// This would typically involve allocating two Scalars for X and Y.
AllocateCurvePoint(pt *CurvePoint, isPublic bool) CurvePointVariables
// AddCurvePoints adds two curve points (P + Q) in the circuit.
// This would involve complex field arithmetic constraints.
AddCurvePoints(p, q CurvePointVariables) CurvePointVariables
// ScalarMulCurvePoint performs scalar multiplication (s * P) in the circuit.
// This would involve even more complex constraints.
ScalarMulCurvePoint(s Variable, p CurvePointVariables) CurvePointVariables
// PairingCheck performs a multi-pairing check e(P1, Q1) * e(P2, Q2) * ... = 1 in the circuit.
// This is the most complex gadget. It takes an array of (G1Point, G2Point) pairs.
// Returns a Variable representing the boolean result (1 for success, 0 for failure).
PairingCheck(pairs [][2]CurvePointVariables) Variable
}
// CurvePointVariables is a representation of a CurvePoint within the constraint system.
type CurvePointVariables struct {
X, Y Variable
}
// --- Simplified Concrete CS for demonstration (not a real ZKP backend) ---
// This is just to show how variables are tracked. A real CS would build R1CS.
type MockConstraintSystem struct {
nextVarID int
constraints []string // For debugging/tracking
variables map[int]Variable
}
func NewMockConstraintSystem() *MockConstraintSystem {
return &MockConstraintSystem{
nextVarID: 0,
constraints: make([]string, 0),
variables: make(make(map[int]Variable)),
}
}
func (cs *MockConstraintSystem) Alloc(value *Scalar, isPublic bool) Variable {
v := Variable{ID: cs.nextVarID, Value: value, IsPublic: isPublic}
cs.variables[cs.nextVarID] = v
cs.nextVarID++
return v
}
func (cs *MockConstraintSystem) AddConstraint(a, b, c Variable, debugInfo string) {
cs.constraints = append(cs.constraints,
fmt.Sprintf("Constraint: %s -> Var%d * Var%d = Var%d", debugInfo, a.ID, b.ID, c.ID))
}
func (cs *MockConstraintSystem) AddLinearConstraint(terms map[Variable]*Scalar, rhs *Scalar, debugInfo string) {
var termStrs []string
for v, s := range terms {
termStrs = append(termStrs, fmt.Sprintf("%s*Var%d", s.String(), v.ID))
}
cs.constraints = append(cs.constraints,
fmt.Sprintf("Linear Constraint: %s -> %s = %s", debugInfo, strings.Join(termStrs, " + "), rhs.String()))
}
func (cs *MockConstraintSystem) Mul(a, b Variable) Variable {
res := cs.Alloc(nil, false) // Result is private
cs.AddConstraint(a, b, res, "Mul")
return res
}
func (cs *MockConstraintSystem) Add(a, b Variable) Variable {
res := cs.Alloc(nil, false)
// In R1CS, a + b = c is often expressed as (a+b) * 1 = c
// Or a + b - c = 0. We can simplify for mock.
cs.AddLinearConstraint(map[Variable]*Scalar{a: big.NewInt(1), b: big.NewInt(1), res: big.NewInt(-1)}, big.NewInt(0), "Add")
return res
}
func (cs *MockConstraintSystem) Sub(a, b Variable) Variable {
res := cs.Alloc(nil, false)
cs.AddLinearConstraint(map[Variable]*Scalar{a: big.NewInt(1), b: big.NewInt(-1), res: big.NewInt(-1)}, big.NewInt(0), "Sub")
return res
}
func (cs *MockConstraintSystem) Neg(a Variable) Variable {
res := cs.Alloc(nil, false)
cs.AddLinearConstraint(map[Variable]*Scalar{a: big.NewInt(-1), res: big.NewInt(-1)}, big.NewInt(0), "Neg")
return res
}
func (cs *MockConstraintSystem) Equal(a, b Variable, debugInfo string) {
cs.AssertIsEqual(a, b, debugInfo)
}
func (cs *MockConstraintSystem) IsZero(a Variable) Variable {
res := cs.Alloc(nil, false)
one := cs.Alloc(big.NewInt(1), false)
// If a is zero, res should be one. If a is non-zero, res should be zero.
// a * inv(a) = 1 if a != 0.
// a * res = 0 (if a != 0, then res must be 0)
// (1-res) * a = 0 (if res = 1, then a must be 0)
// This is often implemented with a specific gadget.
cs.AddConstraint(a, res, cs.Alloc(big.NewInt(0), false), "IsZero (part 1)") // a * res = 0
diff := cs.Sub(one, res)
cs.AddConstraint(diff, a, cs.Alloc(big.NewInt(0), false), "IsZero (part 2)") // (1-res) * a = 0
return res
}
func (cs *MockConstraintSystem) AssertIsEqual(a, b Variable, debugInfo string) {
zero := cs.Alloc(big.NewInt(0), false)
cs.AddLinearConstraint(map[Variable]*Scalar{a: big.NewInt(1), b: big.NewInt(-1)}, big.NewInt(0), "AssertIsEqual")
}
func (cs *MockConstraintSystem) AssertIsBoolean(a Variable, debugInfo string) {
cs.AddConstraint(a, cs.Sub(cs.Alloc(big.NewInt(1), false), a), cs.Alloc(big.NewInt(0), false), "AssertIsBoolean")
}
func (cs *MockConstraintSystem) AllocateCurvePoint(pt *CurvePoint, isPublic bool) CurvePointVariables {
xVar := cs.Alloc(&pt.X, isPublic)
yVar := cs.Alloc(&pt.Y, isPublic)
// Add constraints for the point being on the curve (y^2 = x^3 + Ax + B)
// This is a complex set of constraints. We'll skip the actual implementation for brevity.
return CurvePointVariables{X: xVar, Y: yVar}
}
func (cs *MockConstraintSystem) AddCurvePoints(p, q CurvePointVariables) CurvePointVariables {
// This is a complex gadget involving many field arithmetic operations.
// For demonstration, we just allocate new variables.
resX := cs.Alloc(nil, false)
resY := cs.Alloc(nil, false)
cs.constraints = append(cs.constraints, fmt.Sprintf("AddCurvePoints: (%d, %d) + (%d, %d) -> (%d, %d)", p.X.ID, p.Y.ID, q.X.ID, q.Y.ID, resX.ID, resY.ID))
return CurvePointVariables{X: resX, Y: resY}
}
func (cs *MockConstraintSystem) ScalarMulCurvePoint(s Variable, p CurvePointVariables) CurvePointVariables {
// Another complex gadget.
resX := cs.Alloc(nil, false)
resY := cs.Alloc(nil, false)
cs.constraints = append(cs.constraints, fmt.Sprintf("ScalarMulCurvePoint: %d * (%d, %d) -> (%d, %d)", s.ID, p.X.ID, p.Y.ID, resX.ID, resY.ID))
return CurvePointVariables{X: resX, Y: resY}
}
func (cs *MockConstraintSystem) PairingCheck(pairs [][2]CurvePointVariables) Variable {
// This is the most complex gadget, involving many field extensions and final exponentiation.
// For demonstration, we just assume it works and returns a boolean result.
result := cs.Alloc(nil, false) // This variable will be 1 for success, 0 for failure
cs.AssertIsBoolean(result, "PairingCheck result must be boolean")
cs.constraints = append(cs.constraints, fmt.Sprintf("PairingCheck: %d pairs checked", len(pairs)))
return result
}
注意:MockConstraintSystem 并非一个真正的 ZKP 约束系统实现。它只是为了展示 ConstraintSystem 接口的调用方式和追踪变量与约束。一个真实的 gnark 库会构建一个 R1CS(Rank-1 Constraint System)或 PlonK 电路。Scalar 和 CurvePoint 结构也只是简化表示,实际应使用 math/big 或专门的密码学库类型。
2. 定义证明和验证密钥结构
我们需要定义 ZKP 证明和验证密钥的结构,这些结构将作为我们递归验证电路的输入。这些结构体中的字段将包含椭圆曲线点和标量。
// zkp_types.go
package zkp_recursive_verifier
import (
"fmt"
"math/big"
)
// Proof represents a simplified SNARK proof.
// In a real SNARK (e.g., Groth16), this would contain G1 and G2 curve points.
type Proof struct {
A CurvePoint
B CurvePoint
C CurvePoint
// ... other components of the proof (e.g., G2 points for Groth16)
}
// VerifyingKey represents a simplified SNARK verifying key.
// In a real SNARK, this would contain G1 and G2 curve points and scalars.
type VerifyingKey struct {
AlphaG1 CurvePoint
BetaG2 CurvePoint
GammaG2 CurvePoint
DeltaG2 CurvePoint
GammaABC CurvePoint // Represents the sum of public input coefficients
// ... other components of the verifying key
}
// PublicInputs represents the public inputs to the ZKP.
type PublicInputs map[string]*Scalar // Map from input name to its scalar value
// Simplified example of how to convert a big.Int to Scalar
func bigIntToScalar(i *big.Int) *Scalar {
s := Scalar(*i)
return &s
}
3. 构建 ZKP 验证器电路
现在,我们来构建核心的 VerifierCircuit。这个电路将接收一个待验证的证明、验证密钥和公共输入,并将其转化为一系列约束。
// verifier_circuit.go
package zkp_recursive_verifier
import (
"fmt"
"math/big"
)
// VerifierCircuit represents the ZKP circuit for verifying an inner SNARK proof.
// This struct holds the inputs to the circuit.
type VerifierCircuit struct {
// Public inputs for this *outer* circuit.
// Typically, the hash of the inner proof's public inputs would be public.
// Or, the expected output of the inner proof.
ExpectedVerifierResult Variable // Should be constrained to 1 for success
// Private inputs (witnesses) for this *outer* circuit.
// These are the elements of the inner proof and its verifying key.
InnerProof ProofVariables
InnerVerifyingKey VerifyingKeyVariables
InnerPublicInputs map[string]Variable
}
// ProofVariables is a representation of a Proof within the constraint system.
type ProofVariables struct {
A CurvePointVariables
B CurvePointVariables
C CurvePointVariables
}
// VerifyingKeyVariables is a representation of a VerifyingKey within the constraint system.
type VerifyingKeyVariables struct {
AlphaG1 CurvePointVariables
BetaG2 CurvePointVariables
GammaG2 CurvePointVariables
DeltaG2 CurvePointVariables
GammaABC CurvePointVariables // Public inputs coefficients sum
}
// Define implements the gnark.Circuit interface (conceptually).
// This method describes the arithmetic constraints for verifying a SNARK proof.
// It takes a ConstraintSystem (API) and adds constraints to it.
func (circuit *VerifierCircuit) Define(cs ConstraintSystem) error {
// --- 1. Allocate circuit variables for inner proof components ---
// The proof components (A, B, C) are private witnesses to this circuit.
proofA := circuit.InnerProof.A
proofB := circuit.InnerProof.B
proofC := circuit.InnerProof.C
// The verifying key components are also private witnesses.
vkAlphaG1 := circuit.InnerVerifyingKey.AlphaG1
vkBetaG2 := circuit.InnerVerifyingKey.BetaG2
vkGammaG2 := circuit.InnerVerifyingKey.GammaG2
vkDeltaG2 := circuit.InnerVerifyingKey.DeltaG2
vkGammaABC := circuit.InnerVerifyingKey.GammaABC
// --- 2. Calculate the public input polynomial evaluation sum ---
// This part computes a linear combination of public inputs and verifying key coefficients.
// For Groth16, this is usually sum(publicInput_i * H_i) + gamma_ABC
// Where H_i are precomputed G1 points from the VK.
// For simplicity, we'll assume vkGammaABC already incorporates the public inputs.
// In a real Groth16 verification, you'd iterate through public inputs:
// P_pub := P_pub_0 + publicInput_1 * P_pub_1 + ...
// Where P_pub_i are pre-computed G1 points in the VK.
// Let's assume a simplified scenario where the 'public inputs' are condensed
// into a single G1 point `pubInputG1` derived from the vkGammaABC and actual public inputs.
// This `pubInputG1` is what gets paired against `vkGammaG2`.
// For this example, let's just use vkGammaABC as the representative for public inputs.
// In reality, this would involve a gadget for computing `P_pub` by iterating `InnerPublicInputs`.
// We need to construct the G1 point that represents the commitment to the public inputs.
// This is typically: P_pub = vk.K_0 + sum(public_input_i * vk.K_i)
// Where vk.K_i are G1 points in the verifying key.
// Let's simulate this by just having a placeholder for the aggregated public input G1 point.
// For now, let's just use a dummy point or assume `vkGammaABC` is this aggregated point.
// For a more realistic Groth16:
// publicInputPoint := cs.AllocateCurvePoint(nil, false) // Initialize to zero point
// for name, inputVar := range circuit.InnerPublicInputs {
// // Find the corresponding K_i point from VK for this public input 'name'
// // This part is complex as VKs are structured. Let's simplify and assume a single public input.
// // For demonstration, let's assume `vkGammaABC` is derived from public inputs.
// // In a real scenario, you'd have gadgets to compute the weighted sum of `K_i` points.
// }
// We'll use `vkGammaABC` as the representative of the public input component for the pairing.
// --- 3. Perform the core pairing check ---
// The Groth16 pairing equation is:
// e(A, B) = e(AlphaG1, BetaG2) * e(GammaABC + C, GammaG2) * e(DeltaG1, DeltaG2)
// Where A, C are G1 points, B, AlphaG1, DeltaG1 are G2 points, and BetaG2, GammaG2, DeltaG2 are G2 points.
// (Note: The points in the proof and VK are often in specific groups G1/G2,
// so `CurvePoint` abstraction needs to distinguish this. For now, assume compatibility.)
// The equation is usually written as a product of pairings that equals 1:
// e(A, B) * e(vkAlphaG1, -vkBetaG2) * e(P_pub_G1 + C, -vkGammaG2) * e(vkDeltaG1, -vkDeltaG2) = 1
// (Where P_pub_G1 is the public input sum G1 point)
// Construct the list of pairing terms.
// We'll use the form: e(proofA, proofB) * e(vkAlphaG1, vkBetaG2) * e(vkGammaABC + proofC, vkGammaG2) * e(vkDeltaG1, vkDeltaG2) = 1
// Let's adjust for the target group GT element of 1.
// The standard Groth16 verifier checks:
// e(proofA, proofB) == e(vkAlphaG1, vkBetaG2) * e(vkGammaABC, vkGammaG2) * e(proofC, vkDeltaG2)
// (This is one common form, variations exist based on how P_pub is handled and whether pairings are inverted)
// A more standard representation for `gnark` (and many ZKP systems) is to define the `pairing` operation
// and then check if the final result is 1.
// Let's assume the `PairingCheck` gadget takes pairs `(G1_point, G2_point)` and checks if `product(e(G1_i, G2_i)) == 1`.
// Term 1: e(A, B)
term1G1 := proofA
term1G2 := proofB
// Term 2: e(AlphaG1, -BetaG2)
// Note: Inverting a G2 point (negating its coordinates) is often done to put it on the right side of the equation.
// Let's assume vkBetaG2 is already provided in the correct form for the pairing.
term2G1 := vkAlphaG1
term2G2 := vkBetaG2 // Assume this is already -BetaG2_twisted in actual VK
// Term 3: e(C_prime, GammaG2) where C_prime = (vkGammaABC + sum(public_inputs_i * H_i) + C)
// For simplicity, let's assume vkGammaABC represents the sum of public input coefficients.
// So, the third G1 point is `vkGammaABC + proofC`.
combinedG1ForGamma := cs.AddCurvePoints(vkGammaABC, proofC)
term3G1 := combinedG1ForGamma
term3G2 := vkGammaG2 // Assume this is already -GammaG2_twisted
// Term 4: e(DeltaG1, DeltaG2)
// This term is often written as e(delta_A, delta_B) in some Groth16 variants, where delta_A, delta_B are from the proof itself.
// Let's assume a form where vkDeltaG1 is derived from the VK.
// For Groth16, it's e(delta_A, delta_B) = 1, where delta_A is from proof and delta_B is from proof.
// And the VK has DeltaG1 and DeltaG2.
// The more common Groth16 check is: e(A, B) * e(-alphaG1, betaG2) * e(-C_prime, gammaG2) * e(-delta_A, deltaG2) = 1
// Let's simplify to: e(A, B) * e(vkAlphaG1, -vkBetaG2) * e(P_pub + C, -vkGammaG2) * e(vkDeltaG1, -vkDeltaG2) = 1
// Where P_pub is the public input part.
// For a more canonical Groth16 verification, we often have the following pairings:
// e(A, B) == e(α_G1, β_G2) * e(L_G1, γ_G2) * e(C, δ_G2)
// where L_G1 is a linear combination of public inputs and the verifying key's K_i points.
// This can be rewritten for a single multi-pairing check `product(e(P_i, Q_i)) = 1`.
// A common form for the multi-pairing check for Groth16 is:
// e(A, B) * e(AlphaG1, -BetaG2) * e(L_G1, -GammaG2) * e(C, -DeltaG2) == 1
// Where `L_G1` is the public input contribution.
// Let's define the `L_G1` point. This is the sum of public input scalars multiplied by corresponding G1 points in VK.
// For simplicity, let's assume `vkGammaABC` already represents this aggregated public input point.
// In a real circuit, `L_G1` would be computed based on `circuit.InnerPublicInputs` and VK components.
// For example:
// `L_G1 = vk.G1_L[0]` (constant term)
// `for i, publicInput := range circuit.InnerPublicInputs { L_G1 = cs.AddCurvePoints(L_G1, cs.ScalarMulCurvePoint(publicInput, vk.G1_L[i+1])) }`
// Let's use `vkGammaABC` as the `L_G1` for demonstration purposes.
LG1 := vkGammaABC
// Construct the list of (G1, G2) pairs for the multi-pairing check.
// The actual signs (-ve points) are handled by the underlying elliptic curve operations
// or by how the VK points are prepared. We just pass the points.
pairingPairs := [][2]CurvePointVariables{
{proofA, proofB}, // e(A, B)
{vkAlphaG1, vkBetaG2}, // e(vkAlphaG1, vkBetaG2)
{LG1, vkGammaG2}, // e(L_G1, vkGammaG2)
{proofC, vkDeltaG2}, // e(C, vkDeltaG2)
}
// Important: To check product(e_i) == 1, we often compute e(P1, Q1) * e(-P2, Q2) * e(-P3, Q3) * ... = 1
// This means some G1 or G2 points need to be negated.
// For simplicity, let's assume the `PairingCheck` gadget is smart enough to handle the Groth16 structure,
// or we provide the negated points directly.
// For a direct check `e(A,B) == e(X,Y) * e(W,Z)`, it's `e(A,B) * e(X,-Y) * e(W,-Z) == 1`.
// Let's re-align with this. Assume `vkBetaG2`, `vkGammaG2`, `vkDeltaG2` are already the *negative* of what's needed for pairing.
// Let's use a simpler structure that directly checks for equality of two products of pairings.
// e.g., e(A, B) * e(C, D) == e(E, F) * e(G, H)
// This can be refactored to: e(A, B) * e(C, D) * e(E, -F) * e(G, -H) == 1.
// For Groth16, the verification is:
// e(proofA, proofB) == e(vkAlphaG1, vkBetaG2) * e(LG1, vkGammaG2) * e(proofC, vkDeltaG2)
// Rearranging for the multi-pairing check:
// e(proofA, proofB) * e(vkAlphaG1, cs.Neg(vkBetaG2)) * e(LG1, cs.Neg(vkGammaG2)) * e(proofC, cs.Neg(vkDeltaG2)) == 1
// Let's make `Neg` for CurvePointVariables.
negateG2 := func(cs ConstraintSystem, pt CurvePointVariables) CurvePointVariables {
return CurvePointVariables{X: pt.X, Y: cs.Neg(pt.Y)} // Simple negation for G2 usually means negating Y coord.
}
pairingPairsForCheck := [][2]CurvePointVariables{
{proofA, proofB}, // e(A, B)
{vkAlphaG1, negateG2(cs, vkBetaG2)}, // e(α_G1, -β_G2)
{LG1, negateG2(cs, vkGammaG2)},// e(L_G1, -γ_G2)
{proofC, negateG2(cs, vkDeltaG2)},// e(C, -δ_G2)
}
verifierResult := cs.PairingCheck(pairingPairsForCheck)
// --- 4. Constrain the verifier result to the expected output ---
// This is crucial for recursive proofs: the result of inner verification
// becomes an output (or an assertion) of the outer circuit.
cs.AssertIsEqual(verifierResult, circuit.ExpectedVerifierResult, "Inner proof verification result must match expected")
return nil
}
// Assigns actual values (witnesses) to the VerifierCircuit struct.
func (circuit *VerifierCircuit) Assign(
expectedResult bool,
innerProof Proof,
innerVK VerifyingKey,
innerPublicInputs PublicInputs,
) error {
// Convert expectedResult to a Scalar (1 for true, 0 for false)
expectedScalar := big.NewInt(0)
if expectedResult {
expectedScalar.SetInt64(1)
}
circuit.ExpectedVerifierResult.Value = bigIntToScalar(expectedScalar)
// Assign inner proof components
circuit.InnerProof.A.X.Value = &innerProof.A.X
circuit.InnerProof.A.Y.Value = &innerProof.A.Y
circuit.InnerProof.B.X.Value = &innerProof.B.X
circuit.InnerProof.B.Y.Value = &innerProof.B.Y
circuit.InnerProof.C.X.Value = &innerProof.C.X
circuit.InnerProof.C.Y.Value = &innerProof.C.Y
// Assign inner verifying key components
circuit.InnerVerifyingKey.AlphaG1.X.Value = &innerVK.AlphaG1.X
circuit.InnerVerifyingKey.AlphaG1.Y.Value = &innerVK.AlphaG1.Y
circuit.InnerVerifyingKey.BetaG2.X.Value = &innerVK.BetaG2.X
circuit.InnerVerifyingKey.BetaG2.Y.Value = &innerVK.BetaG2.Y
circuit.InnerVerifyingKey.GammaG2.X.Value = &innerVK.GammaG2.X
circuit.InnerVerifyingKey.GammaG2.Y.Value = &innerVK.GammaG2.Y
circuit.InnerVerifyingKey.DeltaG2.X.Value = &innerVK.DeltaG1.X // Assuming DeltaG1 is part of VK
circuit.InnerVerifyingKey.DeltaG2.Y.Value = &innerVK.DeltaG1.Y
circuit.InnerVerifyingKey.GammaABC.X.Value = &innerVK.GammaABC.X
circuit.InnerVerifyingKey.GammaABC.Y.Value = &innerVK.GammaABC.Y
// Assign inner public inputs
for name, scalarValue := range innerPublicInputs {
if inputVar, ok := circuit.InnerPublicInputs[name]; ok {
inputVar.Value = scalarValue
circuit.InnerPublicInputs[name] = inputVar // Update map
} else {
return fmt.Errorf("public input %s not found in circuit definition", name)
}
}
return nil
}
// NewVerifierCircuit creates a new VerifierCircuit instance with pre-allocated variables.
// This is important for gnark, where variables must be declared before Define is called.
func NewVerifierCircuit(publicInputNames []string) *VerifierCircuit {
circuit := &VerifierCircuit{
ExpectedVerifierResult: Variable{IsPublic: true}, // This is a public output of the circuit
InnerPublicInputs: make(map[string]Variable),
}
// Allocate all proof and VK variables as private (witnesses)
circuit.InnerProof.A = CurvePointVariables{X: Variable{}, Y: Variable{}}
circuit.InnerProof.B = CurvePointVariables{X: Variable{}, Y: Variable{}}
circuit.InnerProof.C = CurvePointVariables{X: Variable{}, Y: Variable{}}
circuit.InnerVerifyingKey.AlphaG1 = CurvePointVariables{X: Variable{}, Y: Variable{}}
circuit.InnerVerifyingKey.BetaG2 = CurvePointVariables{X: Variable{}, Y: Variable{}}
circuit.InnerVerifyingKey.GammaG2 = CurvePointVariables{X: Variable{}, Y: Variable{}}
circuit.InnerVerifyingKey.DeltaG2 = CurvePointVariables{X: Variable{}, Y: Variable{}}
circuit.InnerVerifyingKey.GammaABC = CurvePointVariables{X: Variable{}, Y: Variable{}}
// Allocate public input variables
for _, name := range publicInputNames {
circuit.InnerPublicInputs[name] = Variable{} // These are witnesses to the inner proof, but might be public to the outer circuit.
}
return circuit
}
核心逻辑解释:
VerifierCircuit结构体: 它包含了外部电路的公共输入(ExpectedVerifierResult)和私有输入(InnerProof、InnerVerifyingKey、InnerPublicInputs)。这些私有输入是待验证的内部 ZKP 证明的实际数据。Define方法: 这是 ZKP 电路的核心。- 它首先将
InnerProof、InnerVerifyingKey和InnerPublicInputs中的所有组件都分配为电路中的Variable。这些是证明者的私有输入,需要被证明者提供。 - 然后,它模拟 Groth16 验证器的逻辑。最关键的部分是构建用于
PairingCheckGadget 的椭圆曲线点对。这里我们假设PairingCheck能够处理 Groth16 的多配对等式,并返回一个布尔结果(1 表示成功,0 表示失败)。 - 最后,它使用
cs.AssertIsEqual将PairingCheck的结果(verifierResult)与外部电路的预期结果(circuit.ExpectedVerifierResult)进行约束。这意味着,如果证明者声称内部证明有效,那么PairingCheck必须输出 1。
- 它首先将
NewVerifierCircuit和Assign方法:NewVerifierCircuit用于在构建电路之前,初始化所有变量结构,这在gnark这样的库中是常见的模式。它声明了哪些变量是公共的,哪些是私有的。Assign方法则是在实际生成证明时,将具体的密码学值(如Proof结构体中的点坐标)填充到电路的Variable中,作为证明者的见证(Witness)。
$O(log n)$ 验证的体现:
在这个 VerifierCircuit 中,Define 方法所添加的约束数量,与被验证的内部证明所代表的原始计算的复杂性 n(例如,原始电路的门数量)是无关的。它只与验证算法本身的复杂性相关。
- 解析证明和验证密钥:常数次变量分配。
- 椭圆曲线点加法、标量乘法:在电路中,这些操作由“Gadgets”实现,每个 Gadget 内部包含固定数量的乘法和加法约束。例如,一个点加法 Gadget 可能需要几十个约束。
- 配对检查: 这是最复杂的部分,但
PairingCheckGadget 内部的约束数量,对于一个固定数量的配对(如 Groth16 的 4 个配对),是常数的。它不依赖于n。
因此,这个 VerifierCircuit 的总约束数量是一个常数。当一个 ZKP 证明验证一个具有常数约束数量的电路时,其证明生成时间(对于外部证明)和验证时间(对于外部证明的验证)将是常数或 $O(log k)$(k 是这个常数电路的规模),而不是原始内部计算的 n。
这意味着,无论你内部证明的是一个有 100 个门的计算,还是 100 万个门的计算,验证这个内部证明的 ZKP 电路本身的复杂性都是一样的。这就是实现递归可扩展性的关键。
4. 递归聚合示例
考虑一个场景:我们有 N 个独立的交易证明 P_1, P_2, ..., P_N。我们希望将它们聚合成一个最终的证明 P_agg。
// aggregator.go
package zkp_recursive_verifier
import (
"fmt"
"math/big"
)
// AggregatorCircuit aggregates multiple inner proofs into a single outer proof.
// For simplicity, this example aggregates two proofs. Real aggregators can handle more.
type AggregatorCircuit struct {
// Public input: The expected final result of the aggregated proofs
ExpectedOverallResult Variable // e.g., hash of final state, or 1 if all proofs valid
// Private inputs: The proofs and their verifying keys
Proof1 ProofVariables
VK1 VerifyingKeyVariables
PublicInputs1 map[string]Variable
Proof2 ProofVariables
VK2 VerifyingKeyVariables
PublicInputs2 map[string]Variable
}
func (circuit *AggregatorCircuit) Define(cs ConstraintSystem) error {
// --- Instantiate VerifierCircuit for Proof 1 ---
verifier1 := &VerifierCircuit{
InnerProof: circuit.Proof1,
InnerVerifyingKey: circuit.VK1,
InnerPublicInputs: circuit.PublicInputs1,
ExpectedVerifierResult: cs.Alloc(bigIntToScalar(big.NewInt(1)), false), // Expect Proof1 to be valid
}
if err := verifier1.Define(cs); err != nil {
return fmt.Errorf("failed to define verifier for proof 1: %w", err)
}
// The result of verifier1.Define is implicitly that verifier1.ExpectedVerifierResult is constrained to its value (1).
// We can now use this result variable to check if proof1 was indeed valid.
proof1IsValid := verifier1.ExpectedVerifierResult
// --- Instantiate VerifierCircuit for Proof 2 ---
verifier2 := &VerifierCircuit{
InnerProof: circuit.Proof2,
InnerVerifyingKey: circuit.VK2,
InnerPublicInputs: circuit.PublicInputs2,
ExpectedVerifierResult: cs.Alloc(bigIntToScalar(big.NewInt(1)), false), // Expect Proof2 to be valid
}
if err := verifier2.Define(cs); err != nil {
return fmt.Errorf("failed to define verifier for proof 2: %w", err)
}
proof2IsValid := verifier2.ExpectedVerifierResult
// --- Combine results ---
// Both proofs must be valid for the aggregated proof to be valid.
// We can use a multiplication gadget: 1 * 1 = 1.
allProofsValid := cs.Mul(proof1IsValid, proof2IsValid)
// Constrain the combined result to the overall expected result.
cs.AssertIsEqual(allProofsValid, circuit.ExpectedOverallResult, "Aggregated proofs must match expected overall result")
return nil
}
// Assigns actual values to the AggregatorCircuit.
func (circuit *AggregatorCircuit) Assign(
expectedResult bool,
proof1 Proof, vk1 VerifyingKey, publicInputs1 PublicInputs,
proof2 Proof, vk2 VerifyingKey, publicInputs2 PublicInputs,
) error {
expectedScalar := big.NewInt(0)
if expectedResult {
expectedScalar.SetInt64(1)
}
circuit.ExpectedOverallResult.Value = bigIntToScalar(expectedScalar)
// Create temporary VerifierCircuit instances to help with assignment
// This is a bit clunky, reflecting gnark's pattern of pre-allocating variables.
tempVerifier1 := NewVerifierCircuit(getKeys(publicInputs1)) // Helper to get keys
tempVerifier2 := NewVerifierCircuit(getKeys(publicInputs2))
if err := tempVerifier1.Assign(true, proof1, vk1, publicInputs1); err != nil {
return err
}
if err := tempVerifier2.Assign(true, proof2, vk2, publicInputs2); err != nil {
return err
}
circuit.Proof1 = tempVerifier1.InnerProof
circuit.VK1 = tempVerifier1.InnerVerifyingKey
circuit.PublicInputs1 = tempVerifier1.InnerPublicInputs
circuit.Proof2 = tempVerifier2.InnerProof
circuit.VK2 = tempVerifier2.InnerVerifyingKey
circuit.PublicInputs2 = tempVerifier2.InnerPublicInputs
return nil
}
// NewAggregatorCircuit creates a new AggregatorCircuit with pre-allocated variables.
func NewAggregatorCircuit(publicInputNames1, publicInputNames2 []string) *AggregatorCircuit {
circuit := &AggregatorCircuit{
ExpectedOverallResult: Variable{IsPublic: true},
PublicInputs1: make(map[string]Variable),
PublicInputs2: make(map[string]Variable),
}
circuit.Proof1 = ProofVariables{A: CurvePointVariables{}, B: CurvePointVariables{}, C: CurvePointVariables{}}
circuit.VK1 = VerifyingKeyVariables{AlphaG1: CurvePointVariables{}, BetaG2: CurvePointVariables{}, GammaG2: CurvePointVariables{}, DeltaG2: CurvePointVariables{}, GammaABC: CurvePointVariables{}}
for _, name := range publicInputNames1 {
circuit.PublicInputs1[name] = Variable{}
}
circuit.Proof2 = ProofVariables{A: CurvePointVariables{}, B: CurvePointVariables{}, C: CurvePointVariables{}}
circuit.VK2 = VerifyingKeyVariables{AlphaG1: CurvePointVariables{}, BetaG2: CurvePointVariables{}, GammaG2: CurvePointVariables{}, DeltaG2: CurvePointVariables{}, GammaABC: CurvePointVariables{}}
for _, name := range publicInputNames2 {
circuit.PublicInputs2[name] = Variable{}
}
return circuit
}
func getKeys(m PublicInputs) []string {
keys := make([]string, 0, len(m))
for k := range m {
keys = append(keys, k)
}
return keys
}
在这个 AggregatorCircuit 中,我们实例化了两个 VerifierCircuit。每个 VerifierCircuit 都会对一个内部证明进行验证,并产生一个布尔结果。然后,AggregatorCircuit 将这两个布尔结果相乘,以确保两个内部证明都有效,并将最终结果与 ExpectedOverallResult 进行约束。
通过这种方式,我们能够构建一个验证 N 个证明的 ZKP 电路,其总约束数量是 N 乘以单个 VerifierCircuit 的常数约束数量。这比直接在链上验证 N 个证明要高效得多。更进一步,这种聚合可以再次被聚合,形成一个递归链,从而达到无限的可扩展性。
性能考量与 Go 语言优势
尽管我们讨论的是 ZKP 电路的逻辑复杂性 ($O(log n)$),但在 Go 语言中实现这些逻辑,仍然需要考虑实际的运行时性能。
1. 大数运算:
ZKP 涉及大量的有限域(Prime Field)运算,这些运算通常在大数(math/big.Int)上进行。Go 的 math/big 包性能良好,但频繁的分配和运算仍然是计算密集型任务。
- 优化: 尽量重用
big.Int实例,减少内存分配。Go 的逃逸分析可以帮助优化,但手动管理有助于极端性能场景。
2. 椭圆曲线操作:
椭圆曲线点运算是 ZKP 的基石。虽然我们的 ConstraintSystem 抽象了这些操作,但在实际的 ZKP 库(如 gnark)中,这些 Gadgets 内部会调用底层的 Go 语言实现的椭圆曲线库。
- 优化:
gnark等库通常会使用高度优化的汇编代码来加速这些操作,特别是在性能关键的有限域乘法和加法中。
3. 内存管理与垃圾回收 (GC):
Go 的自动垃圾回收机制方便开发,但在高吞吐量的 ZKP 证明生成过程中,频繁的对象分配可能导致 GC 暂停,影响实时性能。
- 优化:
- 对象池: 对频繁创建和销毁的对象(如
big.Int、曲线点结构)使用对象池可以显著减少 GC 压力。 - 结构体预分配: 尽量在函数外部预分配大型结构体,并以指针传递。
- 减少临时对象: 优化算法,减少中间结果的创建。
- 对象池: 对频繁创建和销毁的对象(如
4. 并发性:
Go 的 Goroutines 和 Channel 是其强大的并发原语。在 ZKP 证明生成中,某些步骤(如多项式求值、FFT)可以并行化。
- 证明生成: 许多 SNARKs 的证明生成过程是高度并行化的,可以利用多核 CPU。Go 的
sync.WaitGroup和 Goroutines 可以有效地管理这些并行任务。 - 验证: 单个 ZKP 证明的验证通常是串行的,但如果有多个独立的证明需要验证,可以在不同的 Goroutine 中并行验证。
5. 电路编译与证明生成/验证时间:
| 阶段 | 描述 | 复杂性(原始计算 $n$) | 典型 Go 性能考量 |
|---|---|---|---|
| 电路定义 | 使用 Go 代码描述算术约束 | $O(C)$ (电路中的约束数量) | 构建 ConstraintSystem,Go 语言层面执行 |
| 电路编译 | 将 Go 电路转换为后端友好的形式(e.g., R1CS) | $O(C)$ | Go 语言执行,优化 ConstraintSystem 实现 |
| 可信设置 | (针对某些 SNARKs)生成公共参考字符串 | $O(n)$ | 离线执行,通常不使用 Go 实现 |
| 证明生成 | Prover 计算满足电路的证明 | $O(n log n)$ 或 $O(n)$ | Go 语言实现,大数、EC 运算,高度并行化 |
| 证明验证 | Verifier 检查证明的有效性 | $O(1)$ 或 $O(log n)$ | Go 语言实现,大数、EC 配对运算,性能关键 |
递归验证的 Go 性能优势:
通过递归,单个链上验证的 ZKP 证明的内部结构是一个常数大小的电路(即 VerifierCircuit)。这意味着,无论它聚合了多少个原始计算,链上验证这个聚合证明的计算量都是固定的(或者随着聚合深度呈对数增长,取决于具体聚合方案)。这使得 Go 语言在链下进行大规模证明生成和聚合,然后将最终的简洁证明提交到链上进行高效验证的模式中,发挥巨大作用。
挑战与未来方向
1. 复杂 Gadgets 的实现:
椭圆曲线点运算和配对操作在 ZKP 电路中实现起来非常复杂,需要深厚的密码学和有限域知识。gnark 等库通过提供预构建的 Gadgets 解决了这个问题,但对于新的密码学原语,实现和优化这些 Gadgets 仍然是挑战。
2. 可信设置管理:
许多 SNARKs 需要一个可信设置。管理这些设置的安全性、透明性和生命周期是一个工程和密码学上的挑战。STARKs 等无需可信设置的系统是解决此问题的一个方向。
3. 调试 ZKP 电路:
ZKP 电路是高度并行的算术表示。调试一个不正确的 ZKP 电路(例如,某个约束没有被满足)比调试传统程序要困难得多,因为错误可能隐藏在复杂的算术关系中。良好的工具和调试器至关重要。
4. 通用性和互操作性:
不同的 ZKP 方案有不同的优缺点。如何设计一个通用的 ZKP 证明系统,使其能够无缝地在不同方案之间切换,并与其他系统(如区块链虚拟机)互操作,是当前研究的热点。
5. 证明大小与验证时间权衡:
虽然 SNARKs 提供了极小的证明大小和验证时间,但证明生成时间通常较高。STARKs 等方案提供了更快的证明生成,但证明大小和验证时间稍大。选择合适的 ZKP 方案需要根据具体应用场景进行权衡。
未来方向:
- Recursion with Universal SNARKs: 结合通用 SNARKs(如 PlonK, Marlin, Halo2),可以进一步简化递归流程,减少每次递归所需的信任假设。
- zkEVMs: 使用 ZKP 证明以零知识方式执行 EVM 交易,实现以太坊的无限可扩展性。
- 隐私计算: 在不泄露敏感数据的情况下进行复杂计算,例如私有投票、隐私机器学习。
- 跨链互操作性: 通过 ZKP 证明不同区块链之间的状态转换,实现安全的跨链通信。
总结
零知识证明,特别是其递归验证的能力,正在为构建可扩展、隐私保护的去中心化系统开辟新途径。通过将 ZKP 验证逻辑本身编码为 ZKP 电路,我们实现了 $O(log n)$ 的渐进复杂度,使得大规模计算的聚合和链上验证成为可能。Go 语言凭借其性能、简洁性和并发能力,是实现这种复杂密码学系统的理想选择。虽然挑战犹存,但 ZKP 的未来充满无限可能,它将是构建下一代互联网基础设施的关键技术之一。
感谢各位的聆听。