当图像识别模型也“眼瞎”:对抗性攻击与防御的攻防迷局 想象一下,你辛辛苦苦训练出一个图像识别模型,它能像鹰眼一样精准地识别猫猫狗狗,区分跑车和卡车。你满心欢喜,觉得终于可以解放双手,让模型去处理繁琐的图像分类工作了。然而,现实可能会给你当头一棒:一个精心设计的、肉眼几乎无法察觉的“小动作”,就能让你的模型瞬间“眼瞎”,把猫咪识别成烤面包机,把跑车认成消防栓。 这就是对抗性攻击,一个让图像识别模型闻风丧胆的“暗黑魔法”。 什么是对抗性攻击?简单来说,就是通过对原始图像进行微小的、难以察觉的扰动,来欺骗图像识别模型,使其产生错误的分类结果。 就像你给一个视力很好的人戴上一副特制的眼镜,让他看到的图像出现扭曲,从而做出错误的判断。 你可能会问,这些扰动到底有多小?小到你几乎无法用肉眼分辨原始图像和被攻击后的图像之间的区别。这就是对抗性攻击最令人头疼的地方:它悄无声息,却威力巨大。 为什么对抗性攻击如此有效? 要理解这个问题,我们需要稍微了解一下图像识别模型的工作原理。现在的图像识别模型,大多是基于深度学习的卷积神经网络。这些网络通过学习大量的图像数据,来提取图像的特征,并根据这些特征进行分类 …
贝叶斯深度学习:不确定性量化与模型鲁棒性
贝叶斯深度学习:让AI也学会“拿不准” 想象一下,你跟一个刚认识的朋友聊天,你问他:“你觉得明天会下雨吗?” 如果他信誓旦旦地说:“肯定不会下!我昨天查了天气预报,绝对晴空万里!” 这时候你可能会觉得,嗯,这人挺自信,但万一明天真的下雨了,他是不是会很尴尬? 但如果他回答:“嗯…我觉得大概率不会下吧,毕竟最近都是晴天,但天气这事儿谁也说不准,带把伞以防万一总是好的。” 你是不是会觉得,这人靠谱,考虑得周全,即便预测错了,也不会让你觉得太离谱。 人工智能也一样。传统的深度学习模型就像那个过于自信的朋友,它们往往给出确定的预测结果,却无法告诉你这个结果有多可靠。而贝叶斯深度学习,就是让AI也学会像那个靠谱的朋友一样,学会表达自己的“不确定性”。 为什么我们需要AI的“不确定性”? 深度学习模型在很多领域都取得了惊人的成就,比如图像识别、自然语言处理等等。但它们也存在一个致命的弱点:过度自信。当模型遇到训练数据中没见过的情况时,往往会给出错误的预测,而且还自信满满,让人防不胜防。 举个例子,自动驾驶汽车的识别系统,如果遇到一个被涂鸦遮挡的路标,传统的深度学习模型可能会将其误判为其他路标,并自 …