各位来宾,各位技术同仁,大家好! 今天,我们齐聚一堂,共同探讨一个在当前AI浪潮中至关重要的话题:如何建立一套从检索召回率到生成信实度的自动化回归测试流水线,以深入实现对RAG(Retrieval-Augmented Generation,检索增强生成)系统或类似生成式AI系统的自动化基准测试。 在人工智能,特别是生成式AI飞速发展的今天,我们欣喜地看到大型语言模型(LLM)在理解、生成自然语言方面展现出惊人的能力。然而,这种能力并非没有代价。LLM的“幻觉”(hallucination)、信息过时、难以控制输出风格等问题,使得它们在实际应用中,尤其是在需要高精度、高可靠性的企业级场景中,面临巨大的挑战。RAG架构应运而生,它通过外部知识检索来增强LLM的生成能力,有效缓解了上述部分问题,让模型能够基于实时、准确的私有数据进行回答。 然而,RAG系统并非一劳永逸。它的性能受到检索模块、生成模块、以及两者之间协同作用的复杂影响。任何一环的改动,无论是模型更新、数据索引变更、提示词工程优化,都可能带来意想不到的退化。传统的、依赖人工的评估方式效率低下、成本高昂且主观性强,难以满足快速迭代和 …
继续阅读“深入 ‘Automated Benchmarking’:建立一套从检索召回率到生成信实度的自动化回归测试流水线”