Universal Transformer:权重共享(Weight Sharing)在层级间的应用与归纳偏置分析

Universal Transformer:权重共享在层级间的应用与归纳偏置分析 大家好,今天我们要深入探讨Universal Transformer,特别是其核心机制之一:权重共享在层级间的应用,以及这种设计带来的归纳偏置。Universal Transformer 作为Transformer模型的演进,旨在解决传统Transformer在处理序列长度上的局限性。通过引入递归机制和权重共享,它能够模拟图灵机的计算过程,理论上可以处理任意长度的序列。 1. Universal Transformer 架构概览 首先,我们回顾一下Universal Transformer的基本架构。与标准的Transformer不同,Universal Transformer不是简单地堆叠固定数量的Transformer层,而是重复应用相同的Transformer层多次,并引入了时间步(time step)的概念。每个时间步,模型都会根据当前状态和输入,更新其内部状态,类似于一个循环神经网络(RNN)。 关键组成部分包括: Transformer 层(Transformer Layer): 这是一个标准 …

ALiBi(Attention with Linear Biases):通过线性偏置实现位置编码的长度泛化能力

ALiBi:通过线性偏置实现位置编码的长度泛化能力 大家好,今天我们要深入探讨一种名为ALiBi(Attention with Linear Biases)的位置编码方法。ALiBi 巧妙地利用线性偏置来增强 Transformer 模型的长度泛化能力,而无需进行任何参数训练。在深入了解 ALiBi 的原理、优势和实现细节之前,我们先简要回顾一下位置编码在 Transformer 模型中的作用以及传统位置编码方法的局限性。 1. 位置编码的重要性与传统方法的局限 Transformer 模型的核心是自注意力机制,它允许模型在处理序列时关注序列中不同位置的信息。然而,自注意力机制本身是位置无关的,这意味着它无法区分序列中不同位置的元素。为了让模型能够感知到序列中元素的位置信息,我们需要引入位置编码。 传统的位置编码方法,例如正弦/余弦位置编码和可学习的位置编码,存在一些局限性: 长度泛化能力差: 这些方法通常在训练时使用固定长度的序列。当模型在推理时遇到长度超过训练序列长度的序列时,性能会显著下降。这是因为模型在训练期间没有见过这些更长的位置编码模式。正弦/余弦编码虽然理论上可以泛化到任 …