Python实现时间序列数据的特征工程:滑动窗口、傅里叶变换与小波分析

好的,没问题。下面是关于Python时间序列数据特征工程的讲座内容: Python时间序列数据的特征工程:滑动窗口、傅里叶变换与小波分析 大家好!今天我们来聊聊时间序列数据的特征工程,重点是滑动窗口、傅里叶变换和小波分析这三个强大的技术。特征工程在机器学习中扮演着至关重要的角色,对于时间序列数据更是如此。精心设计的特征可以显著提升模型的预测能力和泛化能力。 一、时间序列特征工程的重要性 时间序列数据是按照时间顺序排列的一系列数据点,广泛存在于金融、气象、医疗等领域。直接使用原始的时间序列数据通常无法取得好的模型效果,原因在于: 数据噪声: 原始数据可能包含大量的噪声,这些噪声会干扰模型的学习。 非平稳性: 许多时间序列数据是非平稳的,即其统计特性(如均值、方差)随时间变化。非平稳性会影响模型的预测精度。 隐藏模式: 时间序列数据中可能隐藏着一些复杂的模式,例如季节性、趋势性和周期性。这些模式难以直接从原始数据中提取。 特征工程的目标就是从原始数据中提取有用的信息,去除噪声,使数据更适合机器学习模型的训练。通过合理的特征工程,我们可以更好地捕捉时间序列数据的内在规律,从而提高模型的预测准 …

如何使用`SciPy`进行`高级`科学计算:`稀疏矩阵`、`傅里叶变换`和`优化`算法。

好的,下面我们开始今天的 SciPy 高级科学计算讲座,主要内容包括稀疏矩阵、傅里叶变换和优化算法。 一、稀疏矩阵 在科学计算中,我们经常遇到大规模矩阵,但这些矩阵中可能包含大量的零元素。如果直接存储这些零元素,会浪费大量的内存空间,并且在计算时会增加不必要的计算量。稀疏矩阵是一种专门用于存储和处理这类矩阵的数据结构,它只存储非零元素及其对应的索引信息。 1. 稀疏矩阵的存储格式 SciPy 提供了多种稀疏矩阵的存储格式,每种格式都有其特定的优势和适用场景。常用的格式包括: CSR (Compressed Sparse Row): 按行压缩的稀疏矩阵,适用于行操作频繁的场景。 CSC (Compressed Sparse Column): 按列压缩的稀疏矩阵,适用于列操作频繁的场景。 COO (Coordinate list): 坐标列表格式,存储非零元素的行索引、列索引和值,易于构建,但不适合数值计算。 LIL (List of Lists): 基于列表的格式,方便进行稀疏矩阵的增删操作,但不适合数值计算。 DIA (Diagonal): 对角线存储格式,适用于对角矩阵或接近对角矩阵 …