图神经网络 (GNNs) 深度:复杂关系数据建模与应用 想象一下,你正身处一个热闹非凡的社交聚会。这里有老朋友、新面孔,每个人之间都存在着千丝万缕的联系:朋友的朋友、同事的同学、甚至只是在电梯里擦肩而过的陌生人。你努力地想记住每个人的名字、背景,以及他们之间的关系,以便更好地融入这个社交网络。 这就是图神经网络 (GNNs) 的拿手好戏。只不过,GNNs 处理的不是人际关系,而是更加广泛、更加复杂的数据关系。它们就像是一位超级八卦王,能迅速掌握网络中每一个“节点”(人)的信息,并了解他们之间的“边”(关系)。 从“点线游戏”到智能决策:GNNs 的前世今生 在深入 GNNs 的细节之前,我们不妨先回顾一下神经网络的发展历程。传统的神经网络,比如卷积神经网络 (CNNs) 和循环神经网络 (RNNs),擅长处理结构化的数据,比如图像和文本。CNNs 就像一个“图像侦探”,能从像素矩阵中提取特征,识别出猫、狗、汽车等物体。RNNs 则像一个“语言学家”,能理解语句的语法结构和语义信息。 然而,现实世界中的很多数据并非如此结构化。社交网络、知识图谱、蛋白质相互作用网络等等,它们都以图的形式存 …