SimPO(Simple Preference Optimization):无需参考模型的长度归一化偏好优化算法解析

SimPO:无需参考模型的长度归一化偏好优化算法解析 大家好!今天我们来深入探讨一种新颖的偏好优化算法——SimPO(Simple Preference Optimization)。偏好优化,顾名思义,就是让模型输出的结果更符合人类的偏好,从而提升模型的实用性和用户体验。传统的偏好优化方法,例如直接偏好优化(Direct Preference Optimization, DPO),通常依赖于参考模型,并受到生成文本长度差异的影响。SimPO 算法巧妙地解决了这些问题,它无需参考模型,并引入了长度归一化机制,使得训练过程更加稳定高效。 偏好优化背景及现有方法局限性 在大型语言模型(LLM)的训练过程中,传统的预训练目标(例如Next Token Prediction)虽然能让模型掌握丰富的语言知识,但并不能保证模型输出的结果符合人类的期望,例如安全性、可控性、连贯性等。偏好优化正是为了弥补这一缺陷而诞生的。 偏好优化流程一般如下: 数据收集: 收集人类对不同模型输出结果的偏好数据,例如对同一个prompt,模型A的输出比模型B的输出更好。 奖励模型训练: 基于偏好数据训练一个奖励模型(R …