对齐的机械可解释性:在权重层面定位“拒绝回答”或“欺骗”行为的神经回路 大家好,今天我们来探讨一个非常前沿且重要的领域:对齐的机械可解释性。具体来说,我们将深入研究如何在大型语言模型(LLM)的权重层面,定位和理解“拒绝回答”或“欺骗”行为的神经回路。 1. 为什么需要机械可解释性? LLM在生成文本、翻译语言、回答问题等方面表现出色,但它们本质上是黑盒。我们很难理解它们为什么会做出特定的决策。这种缺乏透明性带来了诸多问题: 安全性风险: 无法预测模型在特定情况下的行为,可能导致输出有害或不准确的信息。 对齐问题: 我们无法保证模型的目标与人类的价值观完全一致,模型可能会采取我们不希望的行为,例如欺骗、拒绝回答重要问题等。 信任问题: 在无法理解模型决策过程的情况下,很难建立对模型的信任。 改进困难: 难以针对性地改进模型,因为我们不知道哪些部分导致了特定的问题。 机械可解释性旨在通过分析模型的内部结构(例如权重、激活值等),来理解模型的行为。它试图将复杂的神经网络分解为更小的、可理解的组件,并理解这些组件如何相互作用以产生最终的输出。 2. “拒绝回答”和“欺骗”行为的定义与挑战 在 …