RAG 架构:多索引分片策略实现百万级文本库高性能语义检索 大家好,今天我们来深入探讨如何利用 RAG (Retrieval-Augmented Generation) 架构,通过多索引分片策略,实现对百万级文本库的高性能语义检索。在信息爆炸的时代,快速且准确地从海量数据中提取相关信息变得至关重要。RAG 架构结合了信息检索和文本生成,能够有效地利用外部知识库来增强生成模型的性能。而多索引分片策略则是优化 RAG 架构在大规模数据场景下检索效率的关键技术。 RAG 架构概述 首先,我们简单回顾一下 RAG 架构的基本原理。RAG 架构主要包含两个阶段: 检索阶段 (Retrieval): 根据用户查询,从外部知识库中检索出相关的文档或文本片段。这一阶段的目标是找到与查询语义最相关的上下文信息。 生成阶段 (Generation): 将检索到的上下文信息与原始查询一起输入到生成模型中,生成最终的答案或文本。生成模型利用检索到的知识来补充自身的知识,从而生成更准确、更全面的结果。 RAG 架构的优势在于: 知识增强: 通过利用外部知识库,模型可以访问到更广泛的信息,避免了仅依赖模型自身参数 …