EXL2量化格式:混合精度加载策略在消费级显卡上最大化模型参数量的实践 大家好,今天我们来深入探讨一个非常实用的技术话题:EXL2量化格式及其混合精度加载策略,以及如何在消费级显卡上利用它来最大化可加载的模型参数量。在资源有限的消费级硬件上运行大型语言模型(LLM)一直是一个挑战,而量化技术,特别是 EXL2 格式,为我们提供了一个有力的解决方案。 一、量化技术概述:在精度与效率之间找到平衡 在深入 EXL2 之前,让我们先简单回顾一下量化技术。量化的核心思想是用更少位宽的数值来表示模型参数,从而降低模型大小、减少内存占用,并加速计算。常见的量化方法包括: Post-Training Quantization (PTQ): 模型训练完成后进行量化,无需重新训练。优点是简单快捷,但可能带来较大的精度损失。 Quantization-Aware Training (QAT): 在训练过程中模拟量化过程,使模型适应低精度表示。优点是精度损失较小,但需要重新训练模型。 量化位宽的选择直接影响模型的精度和效率。常用的位宽包括: FP32 (32-bit Floating Point): 原始精度 …
GaLore算法:在消费级显卡上通过梯度低秩投影实现全参数预训练的内存优化
GaLore算法:消费级显卡上的内存优化全参数预训练 大家好,今天我们要深入探讨一种名为GaLore(Gradient Low-Rank Projection)的算法,它旨在解决在消费级显卡上进行大规模Transformer模型全参数预训练时面临的内存瓶颈问题。传统的全参数微调或预训练,尤其是针对大型模型,往往需要大量的GPU内存,这使得许多研究人员和开发者望而却步。GaLore算法通过巧妙地将梯度投影到低秩空间,显著降低了内存占用,从而使得在资源有限的环境下进行模型训练成为可能。 1. 内存瓶颈的根源:大型模型与梯度计算 在深入GaLore算法的细节之前,我们首先要理解内存瓶颈的来源。大型Transformer模型,例如BERT、GPT系列,拥有数百万甚至数十亿的参数。在训练过程中,每个参数都需要存储其梯度,用于更新模型权重。 假设我们有一个拥有 N 个参数的模型,每个参数的梯度以单精度浮点数(float32,占用4个字节)存储,那么仅仅存储梯度就需要 4 * N 字节的内存。此外,优化器(如Adam)通常会维护每个参数的额外状态(例如,一阶和二阶矩估计),这会进一步增加内存占用。 …