各位同仁,各位技术爱好者,大家好! 今天,我们齐聚一堂,探讨一个令人兴奋且极具挑战性的话题:如何构建一个具备“自我学习能力”的Agent。更具体地说,这个Agent能够根据其日常的工作日志,自动分析、识别并优化自身的Prompt模板。 在当今这个由大型语言模型(LLM)驱动的时代,Prompt工程的重要性不言而喻。一个优秀的Prompt能够让LLM的性能事半功倍,而一个模糊或低效的Prompt则可能导致结果南辕北辙。然而,人工优化Prompt模板不仅耗时耗力,而且往往受限于人类的经验和认知偏差。我们是否能让AI自己来做这件事?答案是肯定的,这就是我们今天要深入探讨的核心。 想象一下,一个Agent在执行任务时,不仅完成了工作,还默默记录下每次任务的输入、它使用的Prompt、LLM的输出,以及最重要的——这项任务的成功与否,甚至人类对结果的反馈。日复一日,这些数据积累成了一份详尽的“工作日志”。我们的目标,就是赋予Agent解析这份日志的能力,从中发现规律,理解哪些Prompt结构或措辞导致了成功,哪些导致了失败,并最终,利用这些洞察力,生成或修改出更高效、更精准的Prompt模板。这 …
继续阅读“深度挑战:手写实现一个具备‘自我学习能力’的 Agent,它能根据每天的工作日志自动优化自己的 Prompt 模版”