深入 `LangGraph`:为什么有向无环图(DAG)才是构建复杂、可控 Agent 工作流的终极答案?

各位同仁,各位对AI Agent架构充满热情的开发者们: 欢迎来到今天的讲座。我们今天将深入探讨一个在构建复杂、可控Agent工作流中至关重要的概念:有向无环图(Directed Acyclic Graph, DAG),以及它在LangGraph框架中是如何被发挥到极致的。在AI领域,我们正从简单的“提示-响应”模式,迅速转向需要多步骤推理、工具调用、条件判断、循环修正甚至多Agent协作的复杂系统。面对这种复杂性,传统的线性调用链或简单的函数组合已经显得力不从心。我们迫切需要一种更强大、更灵活、更可控的架构来支撑Agent的智能行为。我将论证,DAG正是这一挑战的终极答案。 一、Agent 工作流的演进与传统模式的局限 在探讨DAG之前,我们首先需要理解为什么Agent的工作流会变得如此复杂,以及我们目前面临的挑战。 早期的AI Agent,比如基于LangChain的简单Chain,通常遵循线性结构:输入 -> LLM -> 输出。这对于特定任务,如文本生成、简单问答,是高效的。然而,当任务需求提升,Agent需要: 进行多步骤推理:将复杂问题分解为子问题,逐步解决。 …