在大型语言模型(LLMs)的应用中,如何有效地引导模型生成高质量、符合特定语境的输出,是一个核心挑战。传统的小样本学习(Few-shot Learning)通过在提示词(Prompt)中提供少量示例来指导模型,但这通常是静态的、预设的。然而,在实际动态变化的业务场景中,静态示例往往无法满足复杂多变的需求。 这就是“Few-shot Dynamic Injection”应运而生的地方。其核心思想是:根据当前的输入或系统状态,从一个预先构建的向量化示例库中动态地检索出最相关的示例,并将其注入到发送给大语言模型的提示词中,从而实现更精准、更具上下文意识的小样本学习。 本文将深入探讨这一技术,从其理论基础、架构设计到具体实现,并分享高级考量与最佳实践。 一、 引言:动态语境中的小样本学习 A. 什么是大语言模型的小样本学习? 大语言模型以其强大的泛化能力和“涌现”特性震撼了人工智能领域。它们在海量数据上进行预训练,学习了丰富的语言模式和世界知识。然而,当我们需要模型执行特定任务或遵循特定风格时,仅仅提供一个指令往往是不够的。 小样本学习(Few-shot Learning)正是解决这一问题的有 …
继续阅读“什么是 ‘Few-shot Dynamic Injection’:在图中根据当前状态,动态从向量库中提取最相关的示例注入 Prompt”