Mixture-of-Depths (MoD): 突破深度计算瓶颈的动态Token级资源分配 大家好,今天我们来深入探讨一个新兴的Transformer变体——Mixture-of-Depths (MoD)。它旨在通过动态分配Token级别的计算资源,打破传统Transformer等深计算的限制,从而提高效率和性能。 1. 引言:Transformer的深度挑战 Transformer模型在自然语言处理(NLP)领域取得了显著的成功。然而,随着模型规模的不断增大,计算成本也呈指数级增长。传统的Transformer架构,如BERT、GPT等,采用的是等深(equal-depth)结构,即每个Token都要经过所有层的处理。这导致了巨大的计算冗余,因为并非所有Token都需要经过所有层才能获得足够的表示。 例如,一个简单的Token可能只需要经过几层处理就能获得准确的上下文信息,而剩下的层只是增加了计算负担。这种等深结构限制了我们扩展模型规模的能力,尤其是在计算资源有限的情况下。 2. Mixture-of-Depths (MoD) 的核心思想 MoD的核心思想是动态地为每个Token分 …
继续阅读“Mixture-of-Depths (MoD) 原理:动态分配Token级计算资源以打破Transformer等深计算限制”