BERT与MUM预训练模型:多语言与跨文化搜索中的迁移学习 各位朋友,大家好。今天我们来探讨一个非常重要的课题:BERT和MUM这两种预训练模型在多语言和跨文化搜索中的迁移学习。随着全球化的深入,跨语言、跨文化的沟通和信息获取变得越来越重要。而搜索引擎作为信息获取的主要入口,如何更好地理解并处理不同语言、不同文化背景下的用户查询,成为一个亟待解决的问题。BERT和MUM的出现,为解决这个问题提供了新的思路和方法。 1. 预训练语言模型与迁移学习 在深入探讨BERT和MUM之前,我们先回顾一下预训练语言模型和迁移学习的基本概念。 1.1 预训练语言模型 (Pre-trained Language Models, PLMs) 预训练语言模型是指,模型首先在一个大规模的文本语料库上进行训练,学习语言的通用知识(例如词汇、语法、语义等),然后将学习到的知识迁移到特定的下游任务中。这种方式可以显著提高下游任务的性能,尤其是在数据量有限的情况下。 早期的语言模型主要基于词向量(例如Word2Vec、GloVe),这些模型只能捕捉词汇层面的信息,而无法捕捉更深层次的语义信息。近年来,基于Transf …