各位观众,各位朋友,大家好!我是你们的老朋友,程序猿老张。今天咱们聊聊Hadoop MapReduce框架里最关键、最基础,也经常被大家忽略的“Map阶段”,特别是关于数据分片和键值对转换这两个核心机制。 先别打瞌睡!我知道MapReduce听起来就让人想打哈欠,但别急,我会尽量用最幽默、最通俗的语言,带你深入了解这个看似复杂,实则非常有趣的环节。保证你听完之后,不仅能彻底理解Map阶段的运作方式,还能在面试的时候唬住面试官!😎 一、故事的开始:为什么要分片? 想象一下,你有一本厚厚的《战争与和平》,你要让你的朋友们一起读,然后每个人负责写一份读书笔记。你会怎么做?难道让所有人都啃同一本?那效率也太低了!最好的办法,当然是把书分成几份,每个人读一部分,读完之后再汇总。 Hadoop MapReduce也是一样的道理。我们需要处理的数据往往是海量的,单靠一台机器肯定搞不定。所以,我们需要把数据拆分成小块,分给不同的机器并行处理。这个拆分的过程,就是“数据分片”(Splitting)。 数据分片的目的非常简单:提高并行度,加速处理速度。 没有分片,就没有MapReduce! 二、分片的过程 …