Redis `HyperLogLog` 原理:基数统计的近似算法与内存优化

各位观众,欢迎来到今天的“Redis HyperLogLog:基数统计的奇妙冒险”讲座! 今天,我们来聊聊Redis里面一个非常酷,但又有点神秘的数据结构——HyperLogLog。 它能帮你解决一个很常见的问题:统计海量数据的基数(distinct count)。 简单来说,就是统计一堆数据里面有多少个不重复的值。 场景回放:你需要统计什么? 想象一下这些场景: 网站每天有多少独立访客(UV)? App每天有多少独立用户? 搜索关键词有多少个不同的用户搜索? 一个大型电商网站,每天有多少不同的商品被浏览? 如果你用传统的方式,比如集合(Set)来存储所有访问过的用户ID,那数据量一大,内存就爆炸了。 比如,你有个网站,每天有几百万用户访问,每个用户ID是64位的整数,那Set就需要占用几百MB甚至几GB的内存。 这还没算其他的开销! 救星登场:HyperLogLog HyperLogLog就是来拯救你的!它是一种概率数据结构,用极小的内存空间就能近似地统计出海量数据的基数。 它牺牲了一点精度,换来了巨大的内存节省。 精度损失通常在百分之几以内,但内存占用却可以减少到原来的几十分之一甚 …