大模型的短时记忆与长时记忆:KV Cache与外部向量检索的架构融合边界

大模型的短时记忆与长时记忆:KV Cache与外部向量检索的架构融合边界 各位朋友,大家好!今天我们来探讨一个大模型领域非常重要且前沿的话题:大模型的短时记忆与长时记忆,以及KV Cache与外部向量检索这两种架构的融合边界。 大模型的强大能力很大程度上源于其对上下文信息的处理能力。这种处理能力可以分为两个层面:短时记忆和长时记忆。短时记忆指的是模型在处理当前输入序列时,能够记住并利用序列中最近的信息。这通常由Transformer架构的自注意力机制和KV Cache来实现。长时记忆则指的是模型能够利用外部知识库,记住并利用训练数据之外的更广泛的信息。这通常由外部向量检索系统来实现。 本次讲座将深入剖析KV Cache和外部向量检索的原理、优势与局限,并探讨如何将两者有效地融合,以构建更强大、更智能的大模型。 一、Transformer与KV Cache:短时记忆的基石 Transformer架构是现代大模型的核心。自注意力机制允许模型在处理每个token时,考虑到序列中所有其他token的信息,从而捕捉上下文关系。然而,在生成长序列时,自注意力计算的复杂度会随着序列长度的增加而呈平方 …