自适应梯度归一化(Adaptive Gradient Normalization, AdaGradNorm)算法详解与Python实现 各位同学,大家好!今天我们来深入探讨一种优化算法——自适应梯度归一化(Adaptive Gradient Normalization,简称AdaGradNorm)。在深度学习模型的训练过程中,优化器扮演着至关重要的角色,它决定了模型参数如何更新以达到最佳的性能。AdaGradNorm 是一种相对较新的优化算法,旨在解决传统优化器(如Adam)在某些情况下表现不佳的问题,尤其是在梯度方差较大或模型训练不稳定时。 1. 优化算法的必要性与挑战 深度学习模型通常包含大量的参数,训练过程就是在高维空间中寻找损失函数的最小值。优化算法就像一个导航员,引导我们朝着这个最小值前进。理想情况下,我们希望优化器能够快速、稳定地找到全局最优解。然而,实际情况往往更为复杂,面临诸多挑战: 非凸性: 深度学习模型的损失函数通常是非凸的,这意味着存在许多局部最小值,优化器可能会陷入其中。 梯度消失/爆炸: 在深度网络中,梯度在反向传播的过程中可能会逐渐消失或爆炸,导致训练停滞或 …
继续阅读“Python实现优化器的自适应梯度归一化(Adaptive Gradient Normalization)算法”