NumPy 中的向量化(SIMD/AVX)优化:Ufuncs 的循环展开与内存对齐实现 各位朋友,大家好。今天我们来深入探讨 NumPy 向量化的底层实现,特别是如何利用 SIMD/AVX 指令集进行优化,并通过循环展开和内存对齐提升性能。我们将重点关注 NumPy 的通用函数(ufuncs),并结合代码示例详细讲解。 1. 向量化与 SIMD/AVX 指令集 传统 CPU 执行指令的方式是标量化的,即一次只处理一个数据。向量化则允许 CPU 一次处理多个数据,从而大幅提高运算效率。SIMD (Single Instruction, Multiple Data) 是一种实现向量化的技术,它通过一条指令同时操作多个数据元素。 NumPy 充分利用了 SIMD 指令集,如 SSE (Streaming SIMD Extensions), AVX (Advanced Vector Extensions), AVX2, AVX-512 等。这些指令集提供了宽向量寄存器(例如,AVX-512 拥有 512 位宽的寄存器),可以同时处理 8 个 64 位浮点数或 16 个 32 位浮点数。 2. …