GPTQ与AWQ的内核级对比:基于海森矩阵的误差最小化与基于激活幅度的保护 大家好,今天我们来深入探讨两种主流的后训练量化(Post-Training Quantization, PTQ)方法:GPTQ (Generative Pre-trained Transformer Quantization) 和 AWQ (Activation-Aware Weight Quantization)。这两种方法都在大型语言模型(LLM)的量化领域取得了显著的成果,能够在保持模型性能的同时大幅降低模型大小和计算复杂度。我们将从内核级别的角度,对比它们的核心思想、实现细节以及优缺点。 1. 量化基础与挑战 量化的本质是将神经网络中的浮点数权重和激活值转换为低精度整数,例如int8。这样做可以显著减少模型存储空间和计算资源需求,但同时也引入了量化误差。量化误差会导致模型性能下降,尤其是在大型模型中,微小的误差也可能被放大。 后训练量化(PTQ)是一种无需重新训练模型即可进行量化的方法。它仅依赖于少量未标记的数据来校准量化参数。这使得PTQ非常适合于那些训练数据难以获取或训练成本过高的场景。然而,PTQ …
AWQ(Activation-aware Weight Quantization):基于激活值分布的显著性权重保护量化
AWQ(Activation-aware Weight Quantization):基于激活值分布的显著性权重保护量化 大家好,今天我们来深入探讨一种名为 AWQ (Activation-aware Weight Quantization) 的权重量化技术。在深度学习模型部署中,模型量化是一种常用的压缩和加速技术。它通过降低模型参数的精度(例如从 FP32 到 INT8)来减少模型大小、降低内存占用和提高推理速度。然而,直接将所有权重都进行量化可能会导致显著的精度损失。AWQ 旨在通过识别并保护模型中对性能至关重要的权重,从而缓解这个问题。 1. 量化的背景与挑战 深度学习模型的巨大尺寸和计算复杂度给部署带来了严峻的挑战。模型量化是解决这些挑战的关键技术之一。量化过程涉及将浮点数(FP32, FP16)表示的模型权重和激活值转换为低精度整数(INT8, INT4)。量化带来的好处包括: 减小模型大小: INT8 权重占用的空间是 FP32 权重的四分之一。 降低内存带宽需求: 减少了模型加载和推理期间的数据传输量。 提高计算效率: INT8 操作通常比 FP32 操作更快,特别是在支持 …
继续阅读“AWQ(Activation-aware Weight Quantization):基于激活值分布的显著性权重保护量化”