各位同仁,各位对RAG技术充满热情的开发者们: 大家好!今天我们齐聚一堂,共同探讨一个在构建健壮、智能RAG系统时不可避免,且极具挑战性的问题:当RAG的初始检索结果为空时,我们的系统应该如何响应?这不仅仅是一个简单的错误处理,更是RAG技术从“被动响应”迈向“主动适应”的关键一步。我们将深入剖析“自修正RAG”(Self-Corrective RAG,简称SCRAG)这一理念,并着重探讨如何驱动一个智能Agent自动调整查询参数并重新执行检索,最终生成有效响应。 RAG架构的基石与潜在的陷阱 首先,让我们快速回顾一下检索增强生成(Retrieval Augmented Generation, RAG)的核心理念。RAG通过将大型语言模型(LLM)的强大生成能力与外部知识库的精确检索能力相结合,旨在解决LLM知识时效性、事实准确性以及幻觉等问题。一个典型的RAG工作流包括以下几个核心阶段: 用户查询(User Query): 用户提出问题或需求。 检索(Retrieval): 系统根据用户查询,从预构建的向量数据库或传统搜索引擎中检索相关文档或文本片段。这通常涉及查询嵌入、向量相似度搜 …
继续阅读“解析 ‘Self-Corrective RAG’:当初始检索结果为空时,如何驱动 Agent 自动调整查询参数并重新入图?”