解析 ‘Self-Corrective RAG’:当初始检索结果为空时,如何驱动 Agent 自动调整查询参数并重新入图?

各位同仁,各位对RAG技术充满热情的开发者们: 大家好!今天我们齐聚一堂,共同探讨一个在构建健壮、智能RAG系统时不可避免,且极具挑战性的问题:当RAG的初始检索结果为空时,我们的系统应该如何响应?这不仅仅是一个简单的错误处理,更是RAG技术从“被动响应”迈向“主动适应”的关键一步。我们将深入剖析“自修正RAG”(Self-Corrective RAG,简称SCRAG)这一理念,并着重探讨如何驱动一个智能Agent自动调整查询参数并重新执行检索,最终生成有效响应。 RAG架构的基石与潜在的陷阱 首先,让我们快速回顾一下检索增强生成(Retrieval Augmented Generation, RAG)的核心理念。RAG通过将大型语言模型(LLM)的强大生成能力与外部知识库的精确检索能力相结合,旨在解决LLM知识时效性、事实准确性以及幻觉等问题。一个典型的RAG工作流包括以下几个核心阶段: 用户查询(User Query): 用户提出问题或需求。 检索(Retrieval): 系统根据用户查询,从预构建的向量数据库或传统搜索引擎中检索相关文档或文本片段。这通常涉及查询嵌入、向量相似度搜 …

解析 ‘CRAG (Corrective RAG)’:如何在检索结果质量不佳时,自动切换到网络搜索或知识图谱补救?

各位技术同仁,下午好! 今天,我们将深入探讨一个在大型语言模型(LLM)应用领域日益凸显的关键议题:如何构建一个更健壮、更智能的检索增强生成(RAG)系统。具体来说,我们将聚焦于一个创新概念——CRAG(Corrective RAG),即纠错型RAG。 RAG的出现无疑是LLM应用领域的一大突破,它通过将外部知识库与LLM相结合,有效缓解了LLM的“幻觉”问题,并使其能够访问实时或领域特定的信息。然而,RAG并非万能药。当检索到的信息质量不佳时,RAG系统依然可能给出不准确、不完整乃至误导性的答案。这正是CRAG诞生的初衷:如何在检索结果质量不佳时,系统能够自动感知并采取补救措施,例如切换到网络搜索或知识图谱查询? 作为一名编程专家,我的目标是为大家剖析CRAG的核心机制、技术挑战以及具体的实现策略,并辅以大量的代码示例,帮助大家将这些理论转化为实际可操作的系统。 1. RAG的困境:当“检索”不再可靠 首先,让我们快速回顾一下RAG的基本工作流程: 用户提交查询(Query)。 系统在预设的知识库(通常是向量数据库)中检索最相关的文档片段(Documents)。 将这些文档片段与用户 …