Python高级技术之:`SciPy`的稀疏矩阵:`CSR`、`CSC`和`LIL`格式的性能对比。

嘿,大家好! 今天咱们聊聊SciPy里的稀疏矩阵,特别是CSR、CSC和LIL这仨兄弟。 稀疏矩阵这东西,简单说就是矩阵里大部分元素都是零。 如果直接用普通矩阵存,那得多浪费空间啊! 所以就有了稀疏矩阵这种专门的存储方式,只存非零元素,省地儿! 为啥要有这么多格式? 你可能会问,为啥搞这么多格式啊? CSR、CSC、LIL,光看名字都眼晕。 原因很简单,不同的存储格式,在不同的操作上性能不一样。 有的适合做加法,有的适合做乘法,有的适合修改元素。 就像不同类型的汽车,有的适合跑高速,有的适合越野。 先来认识一下这三位: CSR (Compressed Sparse Row): 行压缩稀疏矩阵。顾名思义,按行来压缩的。 适合做矩阵向量乘法,尤其是按行访问元素的场景。 CSC (Compressed Sparse Column): 列压缩稀疏矩阵。跟CSR对称,按列来压缩的。 适合做矩阵向量乘法,尤其是按列访问元素的场景。 LIL (List of Lists): 链表型稀疏矩阵。 适合动态构建矩阵,也就是不断插入新元素的场景。 但做数值计算就比较慢了。 Show me the code! …