各位专家、同仁,下午好! 今天,我们汇聚一堂,共同探讨一个在人工智能,特别是智能体(Agent)领域日益凸显的关键议题:深入 ‘Audit Trail for Decision Making’,为每一个 Agent 的决策点生成完整的因果依据报告。随着智能体系统在金融、医疗、自动驾驶等高风险领域的广泛应用,仅仅知道一个智能体做了什么已远远不够。我们迫切需要理解“为什么”它做了这个决定,“依据是什么”,以及“在何种背景下”做出了这个决策。这不仅是出于监管合规的需求,更是构建可信赖、可解释、可调试和可优化 AI 系统的基石。 我将从编程专家的视角,深入剖析如何构建一个健壮的审计追踪系统,以生成每一个智能体决策的完整因果链。我们将从概念定义出发,逐步深入到架构设计、核心实现模式,并通过具体的代码示例来演示其落地。 1. 智能体决策审计:为何不仅仅是日志? 在软件工程中,日志(Logging)是记录系统运行时事件的常见手段。然而,对于智能体的决策过程,传统日志往往显得力不从心。 粒度不足:传统日志可能只记录“Agent X 选择了动作 A”,但缺失了导致这一选择的所有前 …
继续阅读“深入 ‘Audit Trail for Decision Making’:为每一个 Agent 的决策点生成完整的因果依据报告”