各位同仁,下午好! 今天我们齐聚一堂,探讨一个在AI时代日益凸显的关键议题:当底层大型模型经过微调后,我们如何确保其输出的复杂图拓扑结构——例如知识图谱、代码依赖图或业务流程图——不会发生预期之外的逻辑偏移?这正是我们今天讲座的核心:自动化提示漂移检测(Automated Prompt Drift Detection),但我们将其聚焦于更深层次的语义和结构一致性问题。 大型语言模型(LLMs)的强大能力正在改变我们与数据交互的方式。它们不仅能生成流畅的文本,还能在特定提示下生成高度结构化的数据,例如JSON、XML甚至是图形描述语言。当这些模型被集成到更复杂的系统中,用于自动化知识图谱构建、程序合成或系统设计时,其输出的准确性和逻辑一致性就变得至关重要。模型微调(Fine-tuning)是提升模型在特定任务上性能的有效手段,但它也像一把双刃剑,可能在优化特定行为的同时,无意中引入“漂移”,尤其是对那些需要严格结构和逻辑关系的图拓扑而言。这种漂移不仅仅是表面文本的变化,更是底层逻辑和语义的扭曲。 一、 图拓扑的逻辑语义:我们正在保护什么? 在深入探讨如何检测漂移之前,我们首先要明确“复杂 …
继续阅读“解析 ‘Automated Prompt Drift Detection’:如何监测底层模型微调后,原有的复杂图拓扑是否产生了逻辑偏移?”