KV Cache 驱逐策略:H2O 与 SnapKV 算法在长文本中的关键头保留机制 大家好,我是今天的讲师。今天我们将深入探讨 KV Cache 的驱逐策略,特别是在长文本处理场景下,H2O 和 SnapKV 算法如何通过关键头保留机制来优化性能。 KV Cache 的背景与挑战 在深度学习领域,特别是 Transformer 模型中,KV Cache (Key-Value Cache) 扮演着至关重要的角色。它存储了 Transformer 解码过程中先前层的 Key 和 Value 张量,避免了重复计算,显著提升了推理速度。 然而,随着文本长度的增加,KV Cache 的大小也会线性增长。对于长文本生成任务,例如长篇小说创作、对话系统等,KV Cache 很容易耗尽 GPU 的内存资源,导致推理速度下降甚至 OOM (Out of Memory) 错误。因此,有效的 KV Cache 驱逐策略变得至关重要。 挑战主要体现在以下几个方面: 内存限制: GPU 内存大小是有限的,无法无限扩展 KV Cache。 性能损耗: 频繁的 KV Cache 驱逐会导致重新计算,降低推理速度。 …
继续阅读“KV Cache驱逐策略(Eviction Policies):H2O与SnapKV算法在长文本中的关键头保留机制”