各位同仁,各位对人工智能与软件工程充满热情的专家学者们: 今天,我们齐聚一堂,探讨一个在构建高智能、自主性代理(Agent)时至关重要的模式——“Plan-and-Execute”(规划与执行)。在AI领域,尤其是大型语言模型(LLM)的兴起,我们看到了代理在各种任务中展现出惊人的能力。然而,当任务变得复杂、耗时且需要多步骤协调时,传统的“边走边看”或“ReAct”模式便会暴露出其固有的局限性。此时,“Plan-and-Execute”模式的优势便凸显出来,它为我们提供了一种结构化、高效且更具鲁棒性的解决方案。 ReAct 模式的局限性与魅力:为什么它在长任务中力不从心? 在深入探讨“Plan-and-Execute”之前,我们有必要先回顾一下目前广泛使用的“ReAct”模式。ReAct,全称“Reasoning and Acting”,其核心思想是让代理在一个循环中进行思考(Thought)、行动(Action)和观察(Observation)。代理根据当前的观察和内部状态进行思考,决定下一步要采取什么行动,然后执行该行动,并观察其结果,以此作为下一轮思考的依据。 ReAct 的运作 …
继续阅读“什么是 ‘Plan-and-Execute’ 模式?为什么先规划步骤再执行比边走边看(ReAct)更适合长任务?”