RAGAS评估框架:利用Faithfulness与Answer Relevancy量化RAG系统的检索质量

RAGAS评估框架:利用Faithfulness与Answer Relevancy量化RAG系统的检索质量 大家好,今天我们来深入探讨一个非常重要的主题:如何评估检索增强生成 (Retrieval-Augmented Generation, RAG) 系统的检索质量。在构建强大的 RAG 系统时,仅仅依靠模型生成的内容是否流畅、通顺是不够的。我们更需要关注的是,模型生成的内容是否基于检索到的相关信息,以及答案是否真正回答了用户的问题。RAGAS 框架为我们提供了一种量化的方法来衡量这些关键指标,从而帮助我们更好地优化 RAG 系统。 RAGAS 框架主要关注两个核心指标:Faithfulness(忠实度)和 Answer Relevancy(答案相关性)。我们将详细介绍这两个指标的定义、计算方法,并通过代码示例展示如何在实践中使用 RAGAS 进行评估。 1. RAG 系统概述 在深入 RAGAS 之前,我们先简单回顾一下 RAG 系统的工作原理。RAG 系统通过以下步骤工作: 用户查询 (Query): 用户提出一个问题或请求。 检索 (Retrieval): 系统使用查询从知识库( …