扩散大模型(Diffusion Forcing):解决自回归模型在长期规划任务中误差累积的缺陷 大家好,今天我们来聊聊一个非常有意思的话题:如何利用扩散模型来解决自回归模型在长期规划任务中容易出现的误差累积问题。 1. 自回归模型的困境:误差累积与长期规划的挑战 自回归模型(Autoregressive Models, AR)在序列生成任务中应用广泛,例如文本生成、语音合成和时间序列预测。其核心思想是利用过去的信息来预测未来的状态。数学上,我们可以将其表示为: x_t = f(x_{t-1}, x_{t-2}, …, x_{t-n}) + ε_t 其中,x_t 是时间步 t 的状态,f 是一个模型(通常是神经网络),n 是回顾窗口大小,ε_t 是一个噪声项。 然而,当应用于长期规划任务时,自回归模型面临一个严峻的挑战:误差累积。由于每个时间步的预测都依赖于前一个时间步的预测结果,任何微小的误差都会随着时间的推移而累积放大。这导致在长期规划中,模型生成的轨迹偏离期望的结果,甚至完全失效。 举个例子,假设我们要训练一个机器人利用自回归模型完成一个复杂的导航任务:从房间A走到房间B,中间 …