GALORE优化器原理:梯度低秩投影(Gradient Low-Rank Projection)实现单卡预训练

GALORE优化器原理:梯度低秩投影实现单卡预训练 大家好,今天我们要深入探讨一种名为GALORE(Gradient Low-Rank Projection)的优化器,它旨在解决在单张GPU卡上预训练大型语言模型(LLM)的挑战。GALORE 的核心思想是通过梯度低秩投影来降低内存占用,从而使得原本难以实现的单卡预训练成为可能。 预训练的挑战与现有解决方案 预训练大型语言模型需要大量的计算资源和内存。传统的训练方法,例如全参数微调,需要存储模型的所有参数以及优化器的状态,这对于单张GPU卡来说通常是无法承受的。 现有的解决方案主要集中在以下几个方面: 数据并行(Data Parallelism): 将数据划分到多个GPU上进行训练,每个GPU维护一份完整的模型副本。虽然可以加速训练过程,但对于单卡场景并不适用。 模型并行(Model Parallelism): 将模型划分到多个GPU上进行训练,每个GPU只负责模型的一部分。这可以降低单个GPU的内存占用,但需要复杂的通信机制来同步梯度,增加了训练的复杂性。 梯度累积(Gradient Accumulation): 将多个batch的梯 …

GaLore算法:在消费级显卡上通过梯度低秩投影实现全参数预训练的内存优化

GaLore算法:消费级显卡上的内存优化全参数预训练 大家好,今天我们要深入探讨一种名为GaLore(Gradient Low-Rank Projection)的算法,它旨在解决在消费级显卡上进行大规模Transformer模型全参数预训练时面临的内存瓶颈问题。传统的全参数微调或预训练,尤其是针对大型模型,往往需要大量的GPU内存,这使得许多研究人员和开发者望而却步。GaLore算法通过巧妙地将梯度投影到低秩空间,显著降低了内存占用,从而使得在资源有限的环境下进行模型训练成为可能。 1. 内存瓶颈的根源:大型模型与梯度计算 在深入GaLore算法的细节之前,我们首先要理解内存瓶颈的来源。大型Transformer模型,例如BERT、GPT系列,拥有数百万甚至数十亿的参数。在训练过程中,每个参数都需要存储其梯度,用于更新模型权重。 假设我们有一个拥有 N 个参数的模型,每个参数的梯度以单精度浮点数(float32,占用4个字节)存储,那么仅仅存储梯度就需要 4 * N 字节的内存。此外,优化器(如Adam)通常会维护每个参数的额外状态(例如,一阶和二阶矩估计),这会进一步增加内存占用。 …