自回归视频生成(Autoregressive Video Gen):VideoPoet利用Token预测实现多任务统一

自回归视频生成:VideoPoet利用Token预测实现多任务统一 大家好,今天我们来深入探讨自回归视频生成领域的一个重要进展——VideoPoet。VideoPoet 的核心思想是利用 Token 预测的方式,实现多任务的统一建模,从而在视频生成、编辑和理解等任务上展现出强大的能力。 1. 自回归模型与视频生成 自回归模型在序列生成任务中占据着核心地位。其基本原理是:给定序列的前面部分,预测序列的下一个元素。在视频生成领域,这意味着给定视频的前几帧,预测接下来的帧。 传统的自回归视频生成模型,例如基于 PixelCNN 或 Transformer 的模型,通常直接在像素级别进行操作。然而,直接预测像素存在一些挑战: 计算复杂度高:处理高分辨率的像素需要大量的计算资源。 难以捕捉长期依赖关系:像素之间的关系复杂,很难有效地捕捉视频中的长期依赖关系。 生成结果的质量受限:直接预测像素容易产生模糊和不连贯的视频。 为了克服这些挑战,研究者们开始探索基于 Token 的视频表示方法。 2. 基于 Token 的视频表示 基于 Token 的视频表示将视频分解成一系列离散的 Token,每个 …