各位同学,大家好! 今天我们深入探讨一个在大型语言模型 (LLM) 部署和应用中至关重要的话题——量化 (Quantization)。尤其是在资源受限的环境下,例如在本地设备上运行 LLM,或者在需要极致推理速度的场景中,量化技术变得不可或缺。我们将聚焦于当前社区中广泛使用的两种主流量化格式:GGUF 和 EXL2,并详细分析量化后的模型对 LangChain 复杂推理能力可能造成的损耗,以及我们如何设定和理解这个“损耗阈值”。 在座的各位可能都或多或少接触过 LLM,也可能在使用 LangChain 这样的框架来构建复杂的 AI 应用。理解量化,不仅能帮助你优化部署,更能让你在设计应用时,对模型的实际能力有一个清晰的预期,从而做出更明智的技术选型。 1. 什么是量化 (Quantization)? 量化,从根本上说,是一种降低数值精度的技术。在深度学习领域,它指的是将模型中的权重(weights)和/或激活值(activations)从高精度浮点数(如 32 位浮点数 FP32 或 16 位浮点数 FP16/BF16)转换为低精度表示(如 8 位整数 INT8,甚至 4 位或 2 位 …
继续阅读“什么是 ‘Quantization’ (GGUF/EXL2)?解析量化后的模型对 LangChain 复杂推理能力的损耗阈值”