大Batch训练的Ghost Batch Normalization:在不依赖大Batch统计量下的泛化提升 各位同学,大家好!今天我们来探讨一个在深度学习领域非常重要的话题:如何在大Batch训练下提升模型的泛化能力,特别是通过一种叫做Ghost Batch Normalization (GBN) 的技术。 1. 大Batch训练的挑战与优势 在深度学习模型的训练过程中,Batch Size 是一个至关重要的超参数。选择合适的 Batch Size 直接影响模型的训练速度、稳定性和最终的泛化性能。 大Batch训练的优势: 加速训练: 采用较大的 Batch Size 可以更充分地利用计算资源,尤其是 GPU 的并行计算能力,从而显著缩短训练时间。 梯度估计更稳定: 大Batch训练通常可以提供更平滑的梯度估计,这有助于优化器更快地收敛到局部最小值。 大Batch训练的挑战: 泛化能力下降: 经验表明,使用过大的 Batch Size 训练的模型,其泛化能力往往不如小Batch训练的模型。这被称为 "Large Batch Training Generalization G …
继续阅读“大Batch训练的Ghost Batch Normalization:在不依赖大Batch统计量下的泛化提升”