各位同仁,下午好。今天,我们将深入探讨一个在现代分布式系统,特别是依赖外部AI服务应用中至关重要的概念——平滑降级(Graceful Degradation)。我们将聚焦于一个具体的场景:当我们的核心功能依赖于外部大型语言模型(LLM)API,如OpenAI时,如何在这种外部服务不可用或性能下降时,平滑地切换到本地部署的Llama实例,以最小化对用户体验的影响。 平滑降级的核心要义 首先,我们来明确“平滑降级”的含义。它指的是系统在部分功能或组件出现故障时,能够保持核心功能可用,通过提供降级服务而非完全崩溃,从而维持用户的基本体验。这与“断路器(Circuit Breaker)”模式紧密相关,但平滑降级是一个更广阔的策略,它关注的是在故障发生后,如何优雅地处理并提供替代方案。 在AI应用中,对外部API的依赖日益增长。OpenAI、Anthropic等提供了强大的模型能力,但它们是外部服务,面临着网络延迟、API限速、服务中断、成本波动甚至数据隐私等挑战。如果我们的应用完全绑定于这些外部服务,一旦它们出现问题,我们的应用将立即面临全面瘫痪的风险。 这就是平滑降级的价值所在。通过预先设计 …
继续阅读“什么是 ‘Graceful Degradation’:当外部 API(如 OpenAI)宕机时,图如何平滑切换到本地 Llama 实例?”