技能嫁接:将特定领域模型的Transformer Block移植到通用模型的实验 大家好,今天我们来探讨一个比较有趣且具有潜力的方向:技能嫁接,或者更具体地说,将特定领域模型的Transformer Block移植到通用模型。我们将深入探讨这种方法背后的动机、实现细节、面临的挑战以及可能的未来发展方向。 1. 引言:领域专精与通用智能的权衡 在深度学习领域,我们经常面临一个选择:是训练一个专注于特定任务的专家模型,还是训练一个能够处理多种任务的通用模型? 专家模型: 往往能取得更高的精度和效率,但缺乏泛化能力。例如,一个专门用于图像识别的模型,在处理自然语言处理任务时几乎毫无用处。 通用模型: 能够适应多种任务,但往往在特定任务上的表现不如专家模型。例如,GPT-3 能够生成文本、翻译语言、编写代码等等,但在某些特定领域的任务上,可能不如专门针对该领域训练的模型。 理想情况下,我们希望能够结合两者的优点:拥有通用模型的泛化能力,同时具备专家模型的领域专精。技能嫁接,正是试图实现这一目标的策略之一。 2. 技能嫁接:基本概念与动机 技能嫁接的核心思想是将一个在特定领域训练过的模型的某些组 …
继续阅读“Skill Grafting(技能嫁接):将特定领域模型的Transformer Block移植到通用模型的实验”