各位同仁、技术爱好者们,大家好! 今天,我们将深入探讨一个在现代高性能计算领域至关重要的话题:异构内存管理(Heterogeneous Memory Management,简称 HMM)。随着摩尔定律的放缓,我们不再仅仅依赖 CPU 的单核性能提升,而是转向通过集成更多专用硬件加速器(如 GPU、FPGA、NPU 等)来提升系统整体吞吐量和能效。这种多处理器、多架构协同工作的模式,我们称之为“异构计算”。 然而,异构计算在带来巨大性能潜力的同时,也引入了复杂的内存管理挑战。传统的 CPU 与 GPU 之间各自为政的内存模型,已经成为制约其潜能释放的一大瓶颈。HMM 正是为了解决这一痛点而生,它旨在统一 CPU 和 GPU 等异构设备的内存地址空间,让内存访问变得更加透明、高效。 作为一名编程专家,我将带领大家从宏观概念到 Linux 内核的微观实现,层层剖析 HMM 的奥秘。我们将通过代码片段和严谨的逻辑,理解内核是如何构建这一统一管理机制的。 一、异构计算的崛起与内存挑战 我们正身处一个数据爆炸的时代。无论是人工智能的深度学习训练与推理、大数据分析、科学模拟,还是图形渲染与游戏,都对 …
继续阅读“什么是 ‘Heterogeneous Memory Management’ (HMM)?内核如何统一管理 CPU 和 GPU 的内存地址空间?”